

DLED 2019 – The Rhineland Edition

Automated identification and separation of quartz CW-OSL signal components with R

D. Mittelstraß^{1*}, C. Schmidt², J. Beyer³ & A. Straessner¹

¹Institut für Kern- und Teilchenphysik, TU Dresden, 01062 Dresden, Germany ²Lehrstuhl Geomorphologie, Universität Bayreuth, 95440 Bayreuth, Germany ³Institut für Angewandte Physik, TU Bergakademie Freiberg, 09599 Freiberg, Germany *Email: <u>dirk.mittelstrass@luminescence.de</u>

Edited version (2020-03-28)

The problem

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

D_e calculation by SAR protocol

Natural dose is determined by building an artificial dose-signal curve

Protocol see:

Murray, A. S. & Wintle, A. G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 57–73 (2000).

DLED Bingen – 2019-11-10

Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Problem

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Goal

Provide a mathematic method for CW-OSL decomposition

- Identification of the components and their decay constants for each sample individually
- Applicable for a large variety of instrumental conditions
- Maximum robustness against instrumental noise
- easy-to-use → applicable in daily lab routine

The approach

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Basic idea

Assumption 1

CW-OSL measurements can be sufficiently described by:

$$I(t) = \sum_{k=1}^{K} n_k \lambda_k \mathrm{e}^{-\lambda_k t}$$

I(t)	OSL signal
Κ	number of components
n_i	component amplitude
λ_i	component decay constant

Assumption 2

Set of $\lambda_1 \dots \lambda_K$ is the same for each OSL curve in a data set

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Task:

Find decay parameters λ_k for all *K* components globally

Combine all curves to one global mean curve

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Task:

Find decay parameters λ_k for all *K* components globally

Combine all curves to one global mean curve

Fit with increasing number of components *K*

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Task:

Find decay parameters λ_k for all *K* components globally

Combine all curves to one global mean curve

Fit with increasing number of components *K*

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Task:

Find decay parameters λ_k for all *K* components globally

Combine all curves to one global mean curve

Fit with increasing number of components *K*

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Task:

Find decay parameters λ_k for all *K* components globally

Combine all curves to one global mean curve

Fit with increasing number of components *K*

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Task:

Find decay parameters λ_k for all *K* components globally

Combine all curves to one global mean curve

Fit with increasing number of components *K*

Decide which fit is the best via a statistical test

Method proposed by:

Bluszcz, A. & Adamiec, G. Application of differential evolution to fitting OSL decay curves. *Radiation Measurements* **41**, 886–891 (2006).

DLED Bingen – 2019-11-10

Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Step 1: Testing

Verification by simulation:

- Virtual global mean OSL curves
- Includes noise simulation
- Set of varying parameters, with 10386 combinations
- 10386 different global OSL curves simulated and fitted

	Parameter	Input variants
	Fast $(\lambda = 2 \text{ s}^{-1})$	n = 0, 1000, 3000, 10000
OSI components	Medium $(\lambda = 0.5 \text{ s}^{-1})$	n = 0, 1000, 3000, 10000
OSL components	Slow1 ($\lambda = 0.1 \text{ s}^{-1}$)	n = 0,3000,10000
	Slow2 ($\lambda = 0.02 \text{ s}^{-1}$)	<i>n</i> = 10000, 30000, 100000
	Channel width	$\Delta t = 0.1, 0.2, 0.5 \text{ s}$
Detection acttings	Number of channels	N = 100,400
Detection settings	Background signal	$b = 0, 20, 40 \text{ cts s}^{-1}$
	Curve additions	M = 100,400
Method options	χ^2 weighting	$\sigma^2 = 1, I_i$

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Approximated accuracy:		Component				
		-	Fast	Medium	Slow1	Slow2
	Compone	nt found?	99.95%	95.8%	73.8%	96.6%
	Within ±10% range?		97.4%	83.7%	65.5%	52.8%
		Q _{0.05}	0.943	0.785	0.691	0.631
		Q _{0.25}	0.988	0.953	0.909	0.897
	$\lambda_{out} / \lambda_{in}$	Median	0.998	0.991	0.981	0.995
		Q _{0.75}	1.003	1.004	1.013	1.042
		Q _{0.95}	1.021	1.065	1.507	2.266

Key dependencies :

- Long measurement times → Higher chance of over-fitting (too much components)
- Short measurement time → Higher chance of under-fitting (components missed)
- Over-fitting shifts decay constants
- Insignificant correlation between background and λ_{fast} accuracy
- Just weak correlation between background and λ_{slow} accuracy

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

$$I_{1} = \int_{t_{0}}^{t_{1}} I(t) = n_{F}P_{F1} + n_{M}P_{M1} + n_{S}P_{S1}$$

$$I_{2} = \int_{t_{1}}^{t_{2}} I(t) = n_{F}P_{F2} + n_{M}P_{M2} + n_{S}P_{S2}$$

$$I_{3} = \int_{t_{2}}^{t_{3}} I(t) = n_{F}P_{F3} + n_{M}P_{M3} + n_{S}P_{S3}$$
with $P_{i,k} = e^{-f_{k}t_{i-1}} - e^{-f_{k}t_{i}}$

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

time

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Step 2: Testing

Verification by simulation:

- Noise function simulating Poisson-distributed shot noise & instrumental noise
- 15552 parameter combinations
- 15.6 million OSL curves simulated and decomposed

	Parameter	Input variants
	Fast $(\lambda = 2 \text{ s}^{-1})$	n = 0, 1000, 3000, 10000
OSI componente	Medium ($\lambda = 0.5 \text{ s}^{-1}$)	n = 0, 1000, 3000, 10000
OSL components	Slow1 ($\lambda = 0.1 \text{ s}^{-1}$)	n = 0,3000,10000
	Slow2 ($\lambda = 0.02 \text{ s}^{-1}$)	n = 10000, 30000, 100000
	Channel width	$\Delta t = 0.1, 0.2, 0.5 \text{ s}$
Detection settings	Number of channels	N = 100,400
	Background signal	$b = 0, 20, 40 \text{ cts s}^{-1}$
Mathad antions	Determine signal offset	TRUE, FALSE
Method options	Decomposition algorithm	det, nls, det+nls

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Step 2: Testing

Results:

- 100 % calculation success rate
- Accurate intensity results in all cases with corrected signal background
- High precision: 0% 7% relative uncertainty, caused by decomposition method
- Accurate error estimation

Key dependencies:

- Lack of background correction leads to …
 - Slow2 intensity overestimation
 - Slow1 intensity underestimation
- Long channel widths decrease precision and error estimation accuracy
 - \rightarrow Channel width = 0.1 s recommended

	Component			
\overline{n}_{out}	Fast	Medium	Slow1	Slow2
$n_{\rm in}$	Background = 0 cts / s			
Q _{0.05}	1.00	0.99	0.99	1.00
Median	1.00	1.00	1.00	1.00
Q _{0.95}	1.00	1.01	1.01	1.00
	Background = 20 cts / s			
Q _{0.05}	0.98	0.94	0.71	1.01
Median	1.00	1.00	0.94	1.06
Q _{0.95}	1.01	1.11	0.99	1.25
	Background = 40 cts / s			
Q _{0.05}	0.96	0.89	0.43	1.03
Median	1.00	1.01	0.89	1.12
Q _{0.95}	1.03	1.23	0.98	1.50

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Applications

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Result overview

Some application tests were performed ...

- ... at standard SAR samples (blue LEDs; Risø reader)
- Component identification (Step 1) approach found 4 (and once 5) components
- But 3 components matched expectations better → Step 1: *F*-test is insufficient
- <u>Nonetheless</u>, all fast component D_e's are either in accordance with late background subtraction results or match expected age even better

- ... at single grain data sets (green laser; Risø reader)
 - Component identification found
 3 components
 - <u>Component-resolved single grain</u> <u>dose calculation is feasible</u>

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Roberts et al. (2018) proposed new protocol for OSL measurements at room temperature:

Step	Treatment	Details	Comment
1	Reg. Dose	Give dose D_i	<i>D_i</i> = 10 Gy at first cycle (pre-dose)
2	OSL	470 nm stimulation for 100 s	at room temperature
3	Test dose	Give dose D_T	
4	OSL	470 nm stimulation for 100 s	at room temperature
		Return to step 1	

Roberts, H. M. *et al.* Strategies for equivalent dose determination without heating, suitable for portable luminescence readers. *Rad. Meas.* (2018)

- A pre-dose fills up 110°-TL-traps
- Decomposition extracts fast-component-OSL signal from 110°-TL-trap-OSL signal

Potential gains:

- Simplified instrumentation
- Faster measurements (no preheat/cutheat steps)
- May circumvent sensitivity change from pre-dose effect

SAR without thermal treatment

Global OSL curve of 'Fontainebleau' reference quartz measured at room temperature

(Lexsyg research; 525 nm stimulation; ~10 Gy recovery dose; 10 aliquots + 1 background aliquot)

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

SAR without thermal treatment

Fast component parameter			decay constant (s ⁻¹)	Signal amplitude
	Fontainebleau	heated SAR	0.79	1.20E+05
		RT SAR	0.31	8.46E+04
	BT1713	heated SAR	0.98	2.00E+03
		RT SAR	0.35	2.80E+03

Fast component <i>D</i> _e 's		Passed rejection crit.	expected dose (Gy)	CAM (Gy)	Overdispersion
Fontainebleau	heated SAR	10 of 10	105	8.7 ± 0.1	1%
	RT SAR	7 of 10	10.5	10.2 ± 0.5	0%
BT1713	heated SAR	6 of 10	11.3	12.3 ± 1.7	33%
	RT SAR	1 of 10		31.8	-

High potential, but further investigations needed

DLED Bingen – 2019-11-10

Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Conclusion: 'OSLdecomposition' is an accurate and useful tool

What is this method useful for?

- Component-resolved OSL dating
- As tool for thermochronometry or rock surface dating (?)
- As tool to simplify measurement protocols or enable new ones
- Can be adapted for spectrometer and EM-CCD measurements

R Package download from CRAN will be available in spring 2020

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

Thank you For your attention

Get notification when method goes online send an (empty) email at: <u>info@luminescence.de</u>

Interested in beta-testing or any cooperation? <u>dirk.mittelstrass@luminescence.de</u>

DLED Bingen – 2019-11-10 Automated identification and separation of quartz CW-OSL signal components with R dirk.mittelstrass@luminescence.de

