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Abstract 

The probably most common application in retrospective dosimetry is the dating of 

geomorphologic and historic events. An often used method is optical stimulated luminescence 

(OSL) dating. The accuracy of quartz OSL dating results relies strongly on the dominance of the 

thermally stable and easy-to-bleach ‘fast’ signal component. If this component does not 

dominate the initial OSL signal in a given data set, systematic errors are likely. These originate in 

the signal contribution of insufficiently bleached or thermally unstable traps.  To solve this issue, 

a new approach for mathematical component separation is presented. First, we identify the 

number of signal components and their decay constants. We do this by creating one global OSL 

decay curve from all records of a given data set and apply a multi-component exponential decay 

fitting method. Second, we deploy the found decay constants in an algebraic decomposition 

algorithm and divide every single OSL record into its signal components. We test the accuracy, 

precision and robustness of the proposed procedures by comprehensive simulations and 

evaluate the results by statistical methods. The simulations demonstrate the mathematical 

reliability of the method in the majority of scenarios. The new approach is then applied in a 

standard dating protocol and tested at some geomorphological relevant data sets. Also a new 

protocol for simplified measurement conditions is tested. The usefulness of the method as 

reliable and rapid data analysis tool in quartz OSL dating is demonstrated. 

Kurzdarstellung 

Die wahrscheinlich ha ufigste Anwendung der retrospektiven Dosimetrie, ist die Datierung von 

geomorphologischen und historischen Ereignissen. Eine gebra uchliche Methode ist die 

Datierung von Quarzen mittels optisch stimulierter Lumineszenz (OSL). Ihre Genauigkeit ha ngt 

jedoch von der Dominanz der thermisch stabilen und einfach zu bleichenden ‚schnellen‘ OSL 

Signalkomponente ab. Dominiert diese nicht das Anfangssignal einer OSL Messung, sind 

systematische Fehler durch thermisch instabile oder unzureichend gebleichte Signalanteile 

wahrscheinlich. Um dieses Problem zu lo sen, wird ein neuer Ansatz zur mathematischen 

Auftrennung der Signalkomponenten vorgestellt. Zuerst bestimmen wir die Anzahl der 

Signalkomponenten und ihre Zerfallskonstanten u ber ein nichtlineares Regressionsverfahren. 

Danach verwenden wir die ermittelten Zerfallskonstanten um in einem algebraischen Verfahren 

jede einzelne OSL Kurve zu zerlegen. Die Genauigkeit und Robustheit dieser Verfahren testen wir 

mit Hilfe umfassender Simulation, die wir statistisch auswerten. Die Simulationsergebnisse 

zeigen die Zuverla ssigkeit der Methode. Wir testen den neuen Ansatz auch im Rahmen eines 

u blichen Datierungsprotokolls an einigen geomorphologischen Datensa tzen. Es zeigt sich seine 

Nu tzlichkeit als zuverla ssiges und anwenderfreundliches Werkzeug zur Datenanalyse bei der 

OSL Datierung von Quarz.  
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1 Introduction 

Let us think about the crystal lattice of an insulator and its energy band model. An insulator can 

be seen as a semiconductor with a wide band gap. Its crystal lattice may contain defects with 

defect states located deep in the band gap. If these defect states are not clustered with energy 

exchanging path-ways like recombination centres or crystal surfaces, they can be long-term 

stable. A defect state can have a lifetime in the order of millions of years at ambient temperature 

levels, if its energy level is located sufficiently deep in the band gap. Under usual environmental 

conditions, there are just a few ways to change such a defect state directly: By exposing it to 

ionizing radiation or optical light of sufficient photon energy, by heating it up to high enough 

temperatures or by recrystallizing the sample.  

Now let us think about a crystal in nature, for example a sand grain laying on a beach or a 

mineral grain inside a freshly fired brick. During the extensive stimulation with wide-bandwidth 

sun light or the heating process, any charge carrier trap below the conduction band will be 

emptied. After the brick has cooled or after the sand grain is buried, deep traps will be filled with 

charge carriers only by ionizing radiation. Sources of ionizing radiation are cosmic rays as well 

as environmental or artificial radioactivity. With the accumulation of radiation the concentration 

of filled traps increases. This concentration is therefore a measure of time and radiation history 

since the grain has been buried or the brick has been burned. This basic principle allows for 

emergency dosimetry [1], [2], thermochronometry [3] and especially retrospective dosimetry. 

The most common applications of retrospective dosimetry are archaeological and 

geomorphological dating [4]–[6]. 

But how can we measure the concentration of filled traps in a given sample? One way of doing 

that is to measure them directly by electron-spin resonance (ESR) spectrometry [7], [8]. Another 

way is to measure the concentration indirectly by stimulating them. The released charge carriers 

might recombine under the emission of luminescence light. The intensity of the emitted 

luminescence light is proportional to the concentration of filled traps. We can either stimulate 

thermally (= thermoluminescence (TL) [9]), radiologically (= radioluminescence (RL) [10]) or 

optically (= optical stimulated luminescence (OSL) [11], [12]). 

One sample material often used for OSL dating is natural quartz (α-SiO2). Quartz is suitable for 

the process because of its crystallographic purity and its vast occurrence. Quartz OSL dating is a 

standard tool in investigating stratigraphic sequences of sediments [13], [14]. Most sediments 

are rich in sand (or entirely made of it), and most sands are rich in quartz grains. Thus, one can 

reconstruct the chronology of rivers, coastlines, glaciers and dunes with quartz OSL dating. And 

this does not just work on Earth, but also on Mars [15], [16], at least in theory.  
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The history of natural quartz as dosimeter and chronometer goes back to the 1970s when 

Wintle, Huntley and others investigated the use of thermoluminescence dosimetry for dating 

sediments [17]. But in 1985, Huntley et al. [18] showed that instead of TL, rather OSL of natural 

quartz samples is a viable method for dating quartz-rich sediments. The following two decades 

may be seen as the golden age of quartz luminescence research, bringing many new insights and 

ending up in a standard protocol for quartz OSL dating. In 2000, Murray and Wintle [19] 

published their ‘continuous wave optical stimulated luminescence single aliquot regenerative 

dose protocol’ or CW-OSL SAR protocol or just SAR protocol. It established itself quickly as a 

standard protocol and was adapted for other minerals and methods than OSL of quartz, most 

notably infrared stimulated luminescence (IRSL) of feldspars [20]. But the native SAR protocol 

and many of its predecessors share one fundamental flaw: They do not resolve for the different 

types of contributing defects and their different physical properties. This adds sample-related 

systematic errors to the data analysis process and jeopardizes dating results. Many experimental 

and mathematical solutions to this problem have been published over the last 20 years, but none 

of them established itself as new standard. Some approaches rely too much on bright OSL 

signals, which, for quartz, are often not given; other approaches just try to calibrate the errors 

out of the protocol without actually addressing the underlying issues. Most approaches, 

however, are simply too complex and time-consuming to be adapted in a geo-scientist’s 

everyday life.  

In this thesis, I want to present a new mathematical approach which is not just easy-to-use 

because of its emphasis on automation, but also stands on a robust theoretical foundation. My 

hope is that it will not only improve current quartz OSL dating techniques, but will also open a 

new scientific pathway towards future research.  
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2 Fundamentals:  
Quartz as luminophore and dosimeter 

Silica, as defined by their chemical sum formula SiO2, are the second most common minerals on 

earth (after feldspars), making up 12.6% of the weight of the Earth’s crust [21]. The most 

abundant SiO2-modification in the lithosphere is crystalline α-SiO2 or ‘low quartz’ which is 

commonly known just as ‘quartz’. The crystal structure of α-SiO2 is built from [SiO4]4- tetrahedra, 

sharing each corner with another tetrahedron. This structure leads to trigonal-trapezohedral 

symmetry [22] which is the reason for the piezo-electricity of quartz and also allows the 

diffusion of Na+, Li+ and H+ cations along the c-axis, which is relevant for the luminescence 

processes. All luminescence processes in quartz are related to crystal defects. 

 Defect physics 2.1

The most frequent trace element in quartz is aluminium with contents in the order of 100 to 

1000 ppm while only few other elements show significant contents above 1 ppm. The particular 

concentrations vary largely between quartz samples, depending on their origin and variety [22], 

[23].  The main cause of the relatively high purity of most quartz samples is the small ionic 

radius of the Si4+ ions (0.42 A ) which is matched closest by Al3+ ions (0.5 A ) [21]. Accordingly, the 

most frequent point defects (besides E’ oxygen vacancies) are Si-substituting Al-defects: [AlO4]0 

with a bound hole h+ or some cation M+ providing charge neutrality at thermal equilibrium. 

[AlO4]0 and its ionized counterpart [AlO4]- serve as recombination centres in all major 

luminescence emissions [24], [25]. 

Another important class of point defects is the substitution of Si4+ with Ge4+ or Ti4+ (= X) which is 

stabilized by some interstitial alkali ion Li+ or Na+ (= M+), forming the defect pair class [X/M+]+. 

Theories about their contribution to luminescence dosimetry phenomena are inconsistent and 

part of on-going discussions, see chapter 5 of Chen and Pagonis [26]. Itoh et al. [27] suggest them 

as positively charged meta-stable defect state in the irradiation-to-OSL process. 

Table 2.1:   Dominant irradiation and OSL defect mechanisms in quartz after Itoh et al. [27] 

Process Mechanism 

Irradiation 
[AlO4/M+]0 → [AlO4]- + M+ 

M+ + X → [X/M+]+ 

Optical stimulation 
[X/M+]+ → [X/M+]0  + h+ 

[AlO4]- + h+ → [AlO4/h+]0 + hv (~3.4 eV) 



 

4 
 

 

More comprehensive reviews of the defect physics of quartz can be found for example in Go tze 

[22], Preusser et al. [23] and most recently in Chen and Pagonis [26]. 

 Dose information storage and read out 2.2

Independent from the exact defect mechanics, a variety of kinetic models based on 

phenomenological observations has been developed. The simplest model, yet conveniently 

explaining major TL and OSL phenomena, is the one-trap-one-recombination-centre model 

(OTOR) used as theoretical fundament by Chen and McKeever [28] and Chen and Pagonis [29] in 

their textbooks about TL and OSL modelling. The OTOR model illustrates how a solid state 

dosimeter (not just quartz) can be described. It simplifies the defect physics to an energy band 

model with a large band gap, one electron trap and one recombination centre. Kinetic properties 

are assigned to both types of defects: A defect concentration and charge carrier transition 

probabilities into and from the conduction band and valence band. A set of rate equations is 

derived from these kinetic properties. This set of rate equations can be solved with regards for 

any desired scenario, like the accumulation of dose information under irradiation or the 

excitation of TL or OSL under various types of stimulation. Note that for all cases, apart from 

some trivial ones, these equation systems have to be solved numerically. The transition 

probabilities in the kinetic model can be linked to actual physical parameters like the energy 

level in the band gap or the photo-ionisation cross-section, via secondary equations. Thus, the 

OTOR model allows us to explain the mechanics of OSL dating. 

 

 

Figure 2.1:  OTOR model: Irradiation events generate electron-hole pairs. Holes move into 

recombination centres, electrons move partly into electron traps and partly recombine. 
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How is the dose information stored? We assume that the crystal is at the time point zero at its 

thermal equilibrium. This means, most defect states below the Fermi level are filled with 

electrons, while defect states above the Fermi level are mostly empty. In retrospective 

dosimetry, this time point zero equals the point in time of burial after bleaching by sun light or 

extensive heating, or the point in time of (re-)crystallization. To alter this stable state, high 

energy processes are necessary. All high energy processes which occur in nature are related 

either to cosmic rays or to environmental radioactivity.  These irradiation events produce 

electron-hole pairs in the valence band with a certain rate (= dose rate). The holes activate the 

recombination centres, the electrons either fall into an electron trap or recombine with a hole in 

a recombination centre. The chance for an electron going one way or the other, depends on the 

transition probabilities and the concentration of available traps/recombination centres. With 

elapsing time, more and more electron traps are being filled and the likelihood of an electron 

transition is slowly shifting towards the recombination centres. The concentration of filled 

electron traps approaches a saturation level, or more exactly, they approach an equilibrium with 

the thermal decay. In case of the main dating-relevant trap type of quartz, the thermal lifetime at 

room temperature is in the range of several million years. The increase of the trapped-electron 

concentration level can be described with an exponential growth curve with a saturation level 

depending on dose rate and temperature. We will apply such a curve function later in chapter 

3.3. If we know the dose rate of this process, we can set each unit of dose equal to a particular 

time span. If we can reconstruct the accumulated dose in the sample, we can estimate the time 

elapsed since the crystal left thermal equilibrium. Together with the information on the 

environmental dose rate, it is then possible to calculate the age of the sample.  

 

 

Figure 2.2:  OTOR model: Optical stimulation with sufficient photon energy lifts trapped electrons 

into the conduction band. They partly recombine under photon emission and partly fall 

back into the electron trap. 
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To gather information about the accumulated dose, we have to measure the concentration of 

filled electron traps. When performing OSL measurements, we do this by stimulating the sample 

with photons of a certain minimum energy. In case of quartz OSL, the trap of interest is located 

about 2 eV below the conduction band (the exact value depends on the reference). Thus, we need 

at least yellow light to lift electrons into the conduction band. Common are blue (470 nm = 2.64 

eV) and green (532 nm = 2.33 eV) stimulation. In the OTOR model, the transition probability for 

this process is defined by the optical excitation rate 𝜆. This excitation rate is in turn given by the 

product of photon flux and photo-ionisation cross-section of the trap. The photo-ionisation 

cross-section depends on the stimulation photon energy and the sample temperature and is for 

quartz discussed in detail by Singarayer and Bailey [30], [31]. In the publications by Chen and 

others the optical excitation rate is mostly denoted f. We will stay with the common notation for 

decay constants 𝜆 because the values for 𝜆 we will evaluate with the methods introduced later 

are not necessarily equal to the physical optical excitation rate. 

Some delocalised electrons may fall back into the trap (= retrapping) while others recombine 

under the emission of photons (in the near-UV respectively at about 3.4 eV in the case of quartz). 

The recombination process is several orders of magnitude faster than the electron depletion 

[32]. So the likelihood of which way an electron goes is only determined by the defect 

concentrations and the transition probabilities. Chen and Leung [33] simulated OSL signals for 

the OTOR model under the assumption of continuous optical stimulation with constant intensity 

(= CW-OSL). They found that the resulting curves can be very well approximated with stretched 

exponential equations: 

𝐼(𝑡) =  𝐼0e
−(

𝑡
𝜏
)
𝛽

             0 ≤  𝛽 ≤ 1 (2.1) 

Here, 𝐼0 is the initial signal at the start of stimulation and 𝜏 is the lifetime of the signal, not equal 

but in the same order of magnitude as the inverse of the optical excitation rate 𝜆. The ‘stretching’ 

parameter 𝛽 has no particular physical meaning, but decreases when the likelihood of retrapping 

increases.  

A special case occurs when for the conduction-band electrons the likelihood of retrapping is 

negligible compared to the likelihood of recombination. This is the case when the product of 

concentration and transition probability of available recombination centres is much larger than 

the same product for electron traps. Then OTOR model simulations approximate first order 

kinetic behaviour (see chapter 5.3 in Chen and McKeever [28]). The stretching parameter 𝛽 in 

equation (2.1) becomes 𝛽 = 1, the lifetime 𝜏 becomes 𝜏 =
1

𝜆
 and the initial signal 𝐼0 becomes 

𝐼0 = 𝑛0𝜆: 

𝐼(𝑡) =  𝑛0𝜆e
−𝜆𝑡 (2.2) 
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Here, 𝑛0 is the concentration of filled electron traps at the start of the stimulation. Equation (2.2) 

is assumed to sufficiently describe the major OSL signal components of quartz, as we will see in 

the next chapter. The necessary dominance of the recombination centres arises from the defect 

physics of quartz. As we discussed previously, [AlO4] defects are identified as major luminescing 

recombination centres. Other defects, which are assumingly related to the electron traps in the 

OTOR model, are most likely much lower concentrated. However, the links between kinetic 

models and actual defect physics are difficult to draw, as for example the disparity in the type of 

charge carriers between the Itoh et al. theory (see table 2.1) and the OTOR model demonstrates. 

To evaluate the natural dose of a sample, we still have to account for several unknowns: the 

concentration of defects, the transition probabilities and the conversion rate between dose rate 

and electron-hole production. The simplicity of the two-defect OTOR model does not hold for 

actual quartz samples either. In practice, a quartz dosimetry approach does also have to account 

for retrapping effects of shallow traps and for alternative non-luminescent recombination and 

trapping pathways. The issue of unknown defect concentrations and unknown conversion and 

transition rates is solved by setting the natural-dose luminescence intensity into relation with 

artificial-dose luminescence intensities. Other issues can be settled by thermal treatment and 

normalization measurement steps. The exact strategy depends on the chosen measurement 

protocol. The by far most common measurement protocol in quartz OSL dosimetry, is the SAR 

protocol. It was first suggested by Murray and Roberts [34], defined in detail by Murray and 

Wintle [19] and comprehensively reviewed by Wintle and Murray [35]. The SAR protocol was 

also reviewed and discussed in German language in my bachelor thesis in 2013 [36] which can 

be found on the enclosed CD.  

However, despite its widespread use, one issue the SAR protocol does not account for, is the 

occurrence of multiple OSL signal components. 
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 OSL signal components 2.3

The OTOR model for quartz assumes one dominant recombination centre and one electron trap. 

However, experimental quartz OSL decay curve shapes cannot be accurately described by this 

model. In 1994, Smith and Rhodes [37] were the first to systematically investigate the shape of 

CW-OSL decay curves of quartz. They found, that OSL curves can be sufficiently well described by 

three independent exponentially decaying signal components. Bailey et al. [38] investigated this 

further and Bailey [39] published in 2001 his kinetic luminescence model of quartz. Like the 

OTOR model, it is built upon a set of rate equations but includes 5 electron traps and 4 

recombination centres. Bailey enhanced his model later [40] and Pagonis et al. [41] and 

Friedrich et al. [42] published improved versions of Bailey’s model to better account for 

thermally transferred charge carriers and radioluminescence curve shapes. Friedrich et al. [43] 

as well as Peng and Pagonis [44] give brief overviews of the developed quartz models and both 

working groups provide R software solutions for creating luminescence simulations with these 

models. All these models have one thing in common: They describe at least two OSL-contributing 

electron traps with about two orders of magnitude smaller defect concentration as the major 

recombination centres. For these two electron traps, the approximation (2.2) holds according to 

the models, at least under default SAR conditions (470 nm stimulation, 125 °C sample 

temperature). 

Multiple independent OSL signal components with first order kinetics were also confirmed by 

another measurement method. In 1996, Bulur [45] introduced a new OSL technique: linearly 

modulated (LM) OSL. Here, the stimulation intensity increases linearly during OSL 

measurements. Thus, signal components occur as peak-shaped curves. In case of first-order 

kinetics, the position of the maximum is directly proportional to the photo-ionisation cross-

section of the related trap and the intensity of the maximum is directly proportional to 

concentration of filled traps at beginning of the measurement. This allows easy by-hand 

parameter estimation of rapidly decaying OSL components but also simplifies the analysis 

methods to determine slowly decaying components. In consequence, a variety of studies 

investigated the quartz OSL components, using the LM-OSL technique. Bulur et al. [46] found 

that a quartz measured under SAR conditions can be sufficiently well described by four signal 

components of first order kinetics. In this thesis, we will call these four OSL components in 

accordance to the literature: fast, medium, slow1 and slow2. Later studies analysed collections of 

different quartz samples and confirmed the 4-component nature of quartz LM-OSL 

measurements [30], [47], [48]. They found also additional slowly decaying components and, for a 

few samples, an ultrafast component [49]. While the specific photo-ionisation cross-section 

estimates were not identical for all quartz samples, they show some similarities pointing to 

equal physical origins. A brief overview over multiple studies and their findings is provided by 

Durcan and Duller [48], but also in my bachelor thesis [36]. 
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But why is signal component separation desirable for standard dating measurements? In the SAR 

protocol, the integral of the initial ~0.5 s of the CW-OSL signal is defined as luminescence 

intensity value. This value is corrected for the signal background observed in the last few 

seconds of the stimulation. For most samples, the initial measurement signal is dominated by the 

Fast component which is well suited for dating applications because of its thermal stability and 

insensitivity against charge transfers between traps. Nevertheless, in some samples, the medium 

component contributes significantly to the initial signal. The medium component is less 

thermally stable and more sensitive to capture thermally released electrons which leads to 

erroneous natural dose estimations [50]–[52]. More specifically: The age of old samples might be 

underestimated and the age of young samples might be overestimated because of the 

contribution of the medium component to the initial signal. Potential initial signal contributions 

of slowly decaying components might also lead to systematic errors in the dose evaluation 

procedure. The decomposition of the CW-OSL signal can improve the accuracy and reliability of 

quartz OSL dating results. In addition, OSL decomposition can gather valuable information about 

the defect setting of a sample or even enable new kinds of measurement protocols, like we will 

see in chapter 5.3. 

In consequence, a variety of decomposition approaches were proposed so far. These approaches 

can be divided into two categories. The first category contains advanced measurement and/or 

data analysis methods: 

 Substituting the CW-OSL measurements in the SAR protocol with LM-OSL measurements. 

Fitting routines can be applied to identify the signal components. The dose evaluation is 

then performed component-wise [46]. 

 Mathematical transformation of CW-OSL curves into LM-OSL curves or other spectral 

representations [53], [54]. Then the above approach can be applied. 

 Fitting of CW-OSL curves by nonlinear regression [55], [56]. We will apply this method in 

chapter 3.1 as part of our new approach. 

 Calculating and displaying the natural dose measurement channel-wise. The resulting 

𝐷e(𝑡)-plot allows the evaluation and eventually fitting of the ‘true’ dose value [18], [50], 

[57], [58]. 

 Stimulating discretely the fast component only [59], [60]. 

All these approaches rely on sufficiently good signal-to-noise ratios (SNR) which are often not 

given for natural quartz samples. Furthermore, they are more or less time-consuming and 

complex in use. In consequence, they are not applicable in routine OSL dating. To account for this 

problem, a few simpler approaches were also proposed: 

 Estimate the point of measurement time when 50% of the medium component had been 

emitted. Correct the bulk signal before this point of time by subtracting the bulk signal 

after this point of time. This erases the medium component from the initial bulk signal. 
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The approach is known as ‘early light background subtraction’ and probably the most 

common used component-issue-correcting approach [61], [62]. We will include this 

approach later in our application tests in chapter 5 for comparison purposes. 

 Assume a 3-component model and estimate the points of measurement time when 

particular components are dominant. Solve then a simple relation to estimate the fast 

component contribution to the initial signal (the ‘Fast ratio’) [48]. 

 Assume a 3-component model, smooth the CW-OSL curve, define three intervals of 

component dominance and estimate the fast and medium signal intensity by solving two 

relation equations [63]. 

The accuracy of these approaches relies on the exact knowledge of the OSL decay curve model. 

The necessary decay constants to build a model are taken from literature. However, the actual 

decay constants may differ, as well as the number of components. The reliability of the calculated 

natural doses is therefore sample-dependent. Furthermore, these approaches cannot be applied 

easily to not-standard measurement conditions. 

It is the goal of this thesis to develop and test a new approach which is able to unite the 

advantages of methods in both categories without sharing their disadvantages. Therefore, we 

define the following requirements: 

1) Identify the number of components and their decay constants on a sample-to-sample 

basis. 

2) Allow component-resolved dose calculation, even for samples with low-SNR 

measurements. 

3) Allow automated component and dose evaluation, without inherent need for user 

interaction. 

4) Be applicable for a large variety of instrumental and measurement conditions. 
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3 Method: 
Component-wise dose calculation 

Figure 3.1:  General workflow of signal component-wise quartz OSL dose calculation approach 

The basic idea is summarized in figure 3.1. We divide the dose calculation approach into three 

major steps. The first step determines the number of signal components and the decay 

constants. This is achieved by combining all OSL records of a data-set to one global OSL curve. 

Because a data set usually consists of a few hundred OSL records, multi-exponential regression is 

enabled even for data sets with low SNR. A statistical test decides which number of components 

describes the global curve adequately without over-fitting it.  

Step two calculates the integrated signal (i.e. signal intensity) of every component in each OSL 

curve. This is reduced to a quasi-linear regression problem by inheriting the decay constants 

from step one. Two noise-robust methods how to solve this, will be presented and compared.  

Step three takes the component intensities to build dose-signal curves and calculates the 

naturally received dose. This is done for every component and every aliquot separately. From the 

resulting set of natural doses, the sample age can be calculated by applying statistical models, 

which will not be covered in this thesis.  

 

 

Step 1 
Find decay constants 𝜆𝑘 for all  

K components globally 

Step 2 
Calculate component amplitudes 𝑛𝑘 

for each OSL curve 

Step 3 
Divide data set into K data sets and 
evaluate dose for each component 

separately 
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Software framework 

The method for component-wise retrospective dose calculation presented in the following, is 

realized by a set of software functions. These are programmed in the statistical programming 

language R [64]. The functions programmed as part of this master thesis are bundled in a 

function library (e. g. ‘package’) named OSLdecomposition. How to use the package is shown 

in appendix A.1. As some algorithms were already realized by others, functions from the 

packages Luminescence [65], [66] and numOSL [56] were also deployed. Code generated 

graphics, as for example all graphs in this thesis, were realized with ggplot2 [67]. Specific data 

analysis tasks were handled with Rmarkdown [68]. It enables automatic reporting and 

interactive scripting and was used for all simulation tests and all data evaluation purposes. 

Basic assumptions 

The mathematical approaches developed in this thesis are built upon a set of assumptions. The 

fundamental assumption is that any CW-OSL signal 𝐼(𝑡) of quartz can be described as sum of 

exponential decays of first order: 

𝐼(𝑡) =  ∑ 𝑛𝑘𝜆𝑘e
−𝜆𝑘𝑡

𝐾

𝑘=1

 (3.1) 

Every summand models one OSL signal component. We assume the number of components 𝐾 

and the decay parameters 𝜆𝑘 as constant throughout the whole measurement sequence and 

therefore for all CW-OSL records in a given data set of one sample. We also assume the amplitude 

𝑛𝑘 of a component as direct proportional to the amount of charge carrier releases of one specific 

defect state transition type.  

The devices commonly used for quartz OSL measurements use PMTs in photon counting mode 

[69]. Every data point in an OSL record returns the number of photons detected in a 

corresponding time interval.  Hence, OSL records are not described by continuous signal curves 

as in (3.1) but by series of integrals 𝐼𝑖 over equidistant time intervals ∆𝑡. We integrate equation 

(3.1) and get: 

𝐼𝑖 = ∫ 𝐼(𝑡)

𝑖∆𝑡

(𝑖−1)∆𝑡

= ∑𝑛𝑘(e
−𝜆𝑘(𝑖−1)∆𝑡 − e−𝜆𝑘𝑖∆𝑡)

𝐾

𝑘=1

            𝑖 = 1, 2, 3, … ,𝑁  (3.2) 

All math outlined in step 1 and 2 assumes the correctness of (3.2) and all regression and 

decomposition functions are based on this particular formula.  

Eventually appearing detection background or detector non-linearity was not considered during 

the development of the method but will be discussed in chapter 4.3. Nonetheless, it is highly 

recommended to background-corrected measured data before applying the methods outlined in 

this thesis. For more information about detector-related systematic errors, see [69]–[72]. 
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 Step 1 – Evaluation of component number and decay 3.1
constants 

 

One major goal of this thesis is to provide OSL signal decomposition even for measurements with 

weak signals. Fitting equation (3.2) with unknown values of 𝑛𝑘 and 𝜆𝑘 to a low-SNR curve can 

fail, depending on the used algorithm and the accuracy of the start parameters. The probability 

of failure increases with increasing number of components K. As additional problem, we have to 

determine the correct number of components K first. Bluszcz and Adamiec [55] provide a 

strategy to obtain K and the component parameters without any prior knowledge of the sample 

and without start parameters 𝑛𝑘 and 𝜆𝑘 necessary. We will adapt their strategy. But as they state, 

fitting of low SNR curves may miss components. Therefore, an approach to increase SNR prior to 

fitting is necessary.  

Global average curve 

 
Figure 3.2:  Global arithmetic mean OSL curve of sample BK8; 280 records; Channel width = 0.2.   

Grey: data points from all records. Blue: Average curve of all records (“global mean 

curve”); Red: first record (natural dose OSL from aliquot 1); Left: linear axes; Right: 

double-logarithmic axes. 

 

The OSLdecomposition function sum_OSLcurves() returns a sufficient-SNR curve by 

calculating one global arithmetic mean OSL curve from all 𝑀 CW-OSL curves a data set: 

𝐼�̅� =
1

𝑀
∑ 𝐼𝑖, 

 

 =1

 (3.3) 

The mean signal values 𝐼�̅� has in the same order of magnitude as their corresponding signal 

values 𝐼𝑖 in the majority of CW-OSL curves of the data set. But the standard deviation �̅�𝑖 per data 

point of the global curve signals will be much smaller than the single curve error 𝜎𝑖
  per data 

point. If we assume that the uncertainty of a single data point is just caused by the shot noise 
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𝜎shot
 = √𝐼𝑖 and an unknown instrumental noise 𝜎detection

  (dark current noise; stimulation 

background noise), then we can estimate the noise �̅�𝑖 in the arithmetic mean curve and prove the 

SNR increase: 

�̅�𝑖 =
1

𝑀
√∑ 𝜎𝑖, 

 

 

 =1

=
1

𝑀
√∑(𝐼𝑖,   ∆𝑡 𝜎detection

 )

 

 =1

 

�̅�𝑖  
1

𝑀
√𝑀(𝐼�̅�   ∆𝑡 𝜎detection

 )  
𝜎𝑖
 

√𝑀
 

𝜎𝑖
 =

𝐼𝑖   ∆𝑡 𝜎detection
 

𝑀
 

�̅�𝑖  𝜎𝑖
  

(3.4) 

Typical OSL SAR data sets consist of a few hundred OSL records. The signal uncertainty and 

therefore the SNR in the global mean curve can be expected to be at least one order of magnitude 

better than in an average single OSL curve of its data set. This allows us to fit (3.2) with high 

chances of success and high precision in calculating 𝜆1… 𝜆𝐾 even if the single curves provide 

only low-SNR signals. 

Using the global mean curve to determine the decay constants is mathematically allowed 

because we assume 𝜆1… 𝜆𝐾 as global constants. Thus the values of the term (e−𝜆𝑘(𝑖−1)∆𝑡 −

e−𝜆𝑘𝑖∆𝑡) in equation (3.2) remain static throughout the data set and just vary with the indices 𝑖 

and 𝑘. The only parameters varying from OSL curve to OSL curve are the signal 

amplitudes 𝑛1… 𝑛𝐾. And these will be determined later in step 2 by a different method. 
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Multi-component exponential decay fitting 

The function fit_OSLcurve() fits equation (3.2) to the global average OSL curve and returns 

the number of components and their decay constants. The basic workflow is outlined in figure 

3.3. In cycles with increasing number of components, the decay constants are evaluated by a 

sophisticated least squares curve fitting algorithm. In the end of each cycle, a complete set of 

decay parameters and a minimisation value χ² is returned. χ² is also a measure of fit quality. A 

statistical criterion, the F-value, checks if χ² is significantly decreased compared to the previous 

cycle. If the F-value lies below a pre-set threshold value, the fitting curve found in the actual cycle 

is considered as over-fitted. Then the parameter set of the previous cycle is given back by 

fit_OSLcurve(). If the fitting procedure stops before F falls below the threshold, the 

parameters of the last successful fit are given back. 

 

 

Figure 3.3:  Workflow of multi-component exponential decay fitting (step 1 procedure): 

Evaluation of decay constants and number of components. The equations and their 

notation are explained in the following paragraphs. 
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Create multiple random sets of start 
parameters and iterate them in 

dependence of 𝜒 
  by differential 

evolution 

Determine 𝜆1 … 𝜆𝐾 and 𝜒𝐾
  by Levenberg-

Marquardt curve fitting  

Is 𝜒𝐾
  is significantly smaller than 𝜒𝐾−1

 ?  
Decide by an F-test 

Take  𝜆1… 𝜆𝐾from the 
(𝐾 − 1)-fit and continue to step 2 

Start with 𝐾 = 1  
Increase by 1 for further iterations 
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If no 

𝐼𝑖 = ∑ 𝑛𝑘(e
−𝜆𝑘(𝑖−1)∆𝑡 − e−𝜆𝑘𝑖∆𝑡)

𝐾

𝑘=1

 

𝜒 = 𝑅𝑆𝑆 = ∑(𝐼𝑖 − 𝐼𝑖
∗) 

𝑁

𝑖=1

 

𝐹 =  
𝑁

2
− 𝐾 

𝜒𝐾−1
 − 𝜒𝐾

 

𝜒𝐾
  

Fitting model: 

Minimisation value: 

Component count criteria: 

 

Global arithmetic mean curve 
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We will deploy the procedure formulated by Bluszcz and Adamiec [55]. Their fitting algorithm to 

return the decay parameters for a specific number of components was realized in R by Peng et al. 

[56]. Peng et al. programmed the function numOSL::decomp() which is used as core of 

fit_OSLcurve(). They used the FORTRAN MINPACK library [73] to perform a Levenberg-

Marquardt curve fitting [74]. Peng et al. [56] also realized HELA (for ‘hybrid evolutionary-linear 

algorithm’) to solve the starting value problem.  

Solving the starting value problem by differential evolution 

Proposed by Bluszcz and Adamiec [55], HELA is a variant of the differential evolution (DE) 

algorithm formulated by Storn and Price [75]. Differential evolution algorithms define a vector 

space for the parameters in question. In this parameter space, multiple sets of parameter 

(vectors) are created randomly. These vectors undergo mutations and also new vectors are 

created by recombination. For each vector is χ² calculated by an external function call. This 

external function call makes the DE approach independent from the fitting model. The vectors 

with the smallest χ² are taken into the next generation while the others are dismissed. This is 

repeated until a stop condition is fulfilled. As stop condition serves usually an iteration counter 

or a significance test. The parameters of the final vector are very likely close to the global 

minimum of χ². 

To suit the multi-component exponential decay model better, Bluszcz and Adamiec introduced 

with HELA some changes [55]: 

1) The component amplitudes 𝑛1… 𝑛𝐾 are not part of the DE parameter space. Instead they 

are calculated by linear regression as part of the χ² calculation. This halves the necessary 

parameters per vector and increases performance. 

2) The commutability of the terms in equation (3.2) lead to vectors with commuted 

parameters but identical model solutions. To prevent confusion of the DE algorithm, an 

operator sorting the parameters inside the vector is added. 

3) Negative values for the amplitudes are forbidden to prevent unphysical solutions. 

Vectors which lead to negative amplitudes are altered until all amplitudes are equal or 

larger than zero. 

Minimisation of χ² 

The final parameter values returned by HELA are used as starting values of a Levenberg-

Marquardt (LM) curve fitting (see Kelley [74] for a detailed description of LM fitting). Although 

the improvements compared to the HELA calculated values are marginal [55], more precise 

values of the decay constants can be evaluated this way.  

We use χ² as minimisation value for HELA and LM fitting. χ² is defined as residual square sum 

weighted by the signal error 𝜎𝑖
  [76], [77]: 
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  = ∑
(𝐼𝑖 − 𝐼𝑖

∗) 

𝜎𝑖
 

 

𝑖=1

 (3.5) 

χ² is a measure of the deviation between the data point values 𝐼𝑖 and the expected values 𝐼𝑖
∗ 

calculated from the fitting model. The signal variance 𝜎𝑖
  in equation (3.5) is user-defined. A 

straight-forward approach is to use the definition from the common Pearson’s Chi-square test. 

Then, we can set the variance equal to the expected value 𝜎𝑖
 = 𝐼𝑖

∗ if we assume that the signal 

values obey Poisson statistics, χ² becomes: 

  = ∑
(𝐼𝑖 − 𝐼𝑖

∗) 

𝐼𝑖
∗

 

𝑖=1

 (3.6) 

This assumes that the signal values are determined just by the number of observed detection 

events (=counts). And the noise is the statistical uncertainty in the occurrence of these events. In 

optical measurements, this is known as photon shot noise [78]. Note that equation (3.6) just 

holds, if the signal background and other sources of noise (like dark noise or excess noise) are 

negligible and the measurement data is unprocessed. 

In another approach, we could simplify equation (3.5) by ignoring the signal variance and set  

𝜎𝑖
 = 1: 

  = ∑(𝐼𝑖 − 𝐼𝑖
∗) 

 

𝑖=1

=     (3.7) 

Here, χ² is not weighted and is equal to the residual sum of squares (RSS). The RSS is the default 

type of minimisation value in many regression algorithms [79]. 

These two approaches are selectable when running numOSL::decomp(), which performs 

HELA and LM fitting. But neither (3.6) nor (3.7) describe the uncertainty in the global mean OSL 

curve correctly. From (3.4) we conclude that a sufficient estimate for the signal error of the 

global mean curve is given by the combination of shot noise and detection noise 𝜎detection
  

normalized by the channel width ∆𝑡 and reduced by the number of OSL curves 𝑀: 

  = ∑
(𝐼𝑖 − 𝐼𝑖

∗) 

𝐼𝑖
∗

𝑀  
∆𝑡𝜎detection

 

𝑀

 

𝑖=1

 (3.8) 

The type of variance we select, determines the shape of the χ² function. As a consequence, the 

  (𝜆1… 𝜆𝐾 ,  𝑛1… 𝑛𝐾) hypersurface in the parameter space is individual for each type of 

variance and so will be the outcome of HELA and LM fitting at a particular curve.  The ‘correct’ 

hypersurface given by equation (3.8) is not available because it is not incorporated in 

numOSL::decomp(). Incorporating it would mean re-programming HELA and LM fitting, 

which was not done in this thesis because of its time-consuming complexity. 

But equation (3.9, next section) will show that the global minimum of χ² depends just on the true 

parameter values and not on the type of signal variance. The simulation results in chapter 3.1 



 

18 
 

will confirm this. While the accuracy is independent of the variance definition, the precision is 

not. If we chose the 𝜎𝑖
 = 1 case (3.7), data points with high signal values will be weighted higher 

in the χ² calculation. Thus, fast decaying components will be calculated with better precision 

than in the other cases. If we chose the 𝜎𝑖
 = 𝐼𝑖

∗ case (3.6), data points with low signal values will 

have a higher weight in the χ² calculation and slow decaying components will be calculated with 

better precision. If we chose (3.8) for χ² calculation, the weighting will be somewhere in 

between.  

Because the fast component is of most interest in quartz dating applications, we chose the 

 𝜎𝑖
 = 1 approach given in equation (3.7) as default in this thesis. 

Error calculation 

The function of χ² can also be used to calculate the error values of the decay parameters. Given 

that the number of data points is sufficiently large, χ² can be separated into independent 

quadratic functions for each parameter 𝜆𝑘 and 𝑛𝑘. Regarding the decay constant 𝜆𝑘, we can re-

write equation (8.8) in Bevington and Robinson [76] and get:  

  =
(𝜆𝑘 − 𝜆𝑘

∗ ) 

𝜎𝑘
    (3.9) 

Here 𝜆𝑘
∗  is the value of 𝜆𝑘 related to the minimum of χ², 𝜎𝑘

  is the uncertainty of this value in 

matching the unknown true value and the constant   depends on the χ²-functions of the other 

signal components. We can rewrite (3.9) and set   in
 =  . If we chose 𝜆𝑘 now in a way, that the 

value of χ² is increased by one compared to the minimum, we get the 1-𝜎-error of  𝜆𝑘. 

𝜎𝑘
 =

(𝜆𝑘 − 𝜆𝑘
∗ ) 

  −   in
  (3.10) 

We can achieve accurate error estimations by equation (3.10) only if χ² is calculated correctly. 

But the correct χ²-definition (3.8) is not available in the R function we use. Therefore, the 

method as realized for this thesis, is not able to provide accurate error estimations of the 

calculated decay constants. 

F-test   

So far, we discussed the strategy of finding the correct decay constants for a given number of 

components. But how to find the number components which represents best the OSL curves of a 

sample? Bluszcz and Adamiec [55] propose to use a statistical test, the F-test [76], [77], [80]. To 

understand the F-test, we have to understand the distribution of possible χ² values in case of a 

perfect fitted model. This χ² distribution depends just on the degrees of freedom, assuming the 

variance term in (3.5) is chosen correctly. The degrees of freedom 𝑛 are given by the number of 

data points 𝑁 minus the number of fitting parameters (2𝐾 in our model). The expected value of 

χ² in a perfect fit is proportional to number of degrees of freedom. The F-distribution is defined 
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by the ratio of two χ² distributions divided by their degrees of freedom. Thus, the ratio of two 

particular values   
  and   

 , divided by their degrees of freedom 𝑛  and 𝑛 , gives us the 

value    , which is part of the F-distribution: 

   =
  
  𝑛 

  
  𝑛 

 (3.11) 

The position of     in the F-distribution gives us the probability whether both χ² values differ 

just by chance or differ because   
   was not obtained from an adequately fitted curve. We can 

use this relationship to estimate the significance in fit improvement between two models. We 

can also prove the significance of an additional term in a model. Applied to our multi-

exponential decay model (3.2) with 𝐾 components, we get equation (8) in Bluszcz and Adamiec 

[55]: 

 =
( 𝐾−1

 −  𝐾
 ) 2

 𝐾
  (𝑁 − 2𝐾)

 (3.12) 

If   is large, then ∆  
  was not χ²-distributed, which means that the additional component 

improved the fitting significantly. If   is low, then the fitting wasn’t improved significantly. We 

can now define a threshold value for   to decide whether we keep the additional term or not. It 

is common to choose a threshold value that guarantees a probability of less than 5 % that the χ²-

decrease happened just by chance [55], [76], [79]. Looking at an F-distribution table like C.5 and 

C.6 in Bevington and Robinson [76], we get threshold values of about  th esho d = 3  1, 

depending on the particular number of degrees of freedom. But as the case studies in chapter 5.2 

will show, 5 components or more are needed to reach such low F-values. This is not practicable 

because 1) the fitting procedure might break before reaching this level of fitting quality and 2) 

more components lead to decreased SNR in the method we will introduce in the next chapter. In 

practice, most OSL curves are sufficiently fitted with 3 or 4 components. So in accordance with 

the simulation and application results shown later in this thesis, threshold values of at least 

 th esho d   0 are recommended.  

Also the occurrence of five or more components might not be physically justified due to 

inaccuracies in the multi-exponential decay model (3.2) when applied on the global mean curve: 

 

1) The photon flux inside a sample grain determines its OSL decay constants. But the 

photon flux will vary from grain to grain due to variations in reflectance, transmittance 

and layer density. A similar effect has the inhomogeneity of the OSL stimulation. About 

20 % variation in stimulation intensity over the sample area is common [81], [82]. 

2) We assume first order kinetics for all OSL components. This does not take potential re-

trapping and photo-transfer effects in account which could lead to higher-than-first 

order kinetics and therefore stretched exponential component curve shapes. This is 

especially true for slow decaying components [83]. 

3) The lifetime of the recombination process is assumed to be zero while studies show it is 

mostly in the range of 30 to 45 µs and up to 200 µs for some recombination signal 
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components [32]. The resulting luminescence inertia can lead to a weaker than expected 

first data point in measurements with high stimulation intensity and small channel 

widths.  

4) Other technical parameters like sample temperature, LED stimulation transient shape, 

LED temperature (LED peak wavelengths are quite sensitive to temperature changes) 

and sample carrier reflectance might also change during the measurement sequence of 

one sample 

 

Another issue when considering the threshold value of   is the accuracy of the F-distribution. 

The F-distribution assumes that obtained values of χ² are actually following a χ²-distribution. 

This requires the accurateness of the variance term in equation (3.5). But because we neglected 

the weighting factor by using the RSS as χ² in equation (3.7), two effects happen: 1) all χ² values 

are scaled up or down by an unknown factor. 2) the χ²-distribution is skewed in an unknown 

manner. Luckily, the unknown scaling factor disappears when calculating F in (3.11) or (3.12). 

And the unknown skewness can be considered as weak effect due the reduced bandwidth in the 

χ²-distribution because of the large number of degrees of freedom. In addition, the logarithmic 

behaviour of   helps to separate ‘good’ from ‘bad’ fits independent from the exact value of  . 

Nonetheless, as Hedderich & Sachs [80] state, other significance tests will deliver more accurate 

results under the circumstance of inaccurate χ²-distributions. 
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 Step 2 – Single curve decomposition 3.2

 

 

Figure 3.3:  Workflow of OSL decomposition process for three components. Here, j is the interval and 

bin index, k is the component index. The CW-OSL record is assigned by 

decompose_SARdata(), the decay constants are provided by fit_OSLcurve(), 

the intervals are determined by calc_OSLintervals() and calculation process is 

performed by decompose_OSLcurve(). 

 

In step 2 of the method, we calculate the signal intensity of each in step 1 found component for 

every CW-OSL record in a given data set. The signal intensity is related to the dose the sample 

received prior the measurement of the OSL record. We will use the intensity values resulting 

from step 2 later in step 3 to build signal-dose curves. 
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Like step 1, step 2 is based on the integral equation (3.2) of a multi-component exponential 

decay. But with the decay constants 𝜆𝑘 now known, we can define the trap release probability 𝑃𝑖𝑘 

to simplify equation (3.2): 

𝐼𝑖 = ∑𝑛𝑘𝑃𝑘𝑖

𝐾

𝑘=1

            𝑖 = 1, 2, 3, … ,𝑁  

                        𝑃𝑘𝑖 = e−𝜆𝑘(𝑖−1)∆𝑡 − e−𝜆𝑘𝑖∆𝑡 

(3.13) 

Because this equation needs just the channel number i and the channel width ∆𝑡 as input 

parameter, we are able to calculate the decay probability 𝑃𝑖𝑘 for each component k in each 

channel without considering the measured signal itself. The sum of all 𝑃𝑖 from one component, 

from the start of the measurement at 𝑡 = 0 to infinity 𝑡 = ∞ must be ∑𝑃 = 1. In consequence, 

the pre-factor  𝑛𝑘 must be equal to the fully integrated signal intensity of its component k. Thus, 

the value  𝑛𝑘 should be directly proportional to the concentration of filled traps related to the 

observed signal. And the concentration of filled traps is related to the accumulated dose, which is 

the information we want to obtain.  Thus, the goal must be to gather 𝑛𝑘 as accurate and precise 

as possible. One approach to do that derives directly from equation (3.13). 

Equation (3.13) applied on all channels of one single OSL record, produces a linear equation 

system with N equations and K unknown variables 𝑛1 … 𝑛𝐾 . There are many ways to solve such 

an equation system in a convenient and robust way. The approach described in the following, 

reduces the equation system to K equations and solves them based on determinants. This 

algebraic solution will allow us an analytical determination of the intensity errors.  

The procedure proposed in the following is a further development of the ideas presented in my 

bachelor thesis [36] and the subsequent conference talk [84]. A general introduction of the used 

methodology is provided by chapter 7 and appendix B in Bevington and Robinson [76].  

Later, in chapter 4.2 we will test the method by simulation for its accuracy, precision and 

robustness. In these simulations, we will also test a nonlinear regression method provided by the 

R function stats::nls(). This allows us to compare the determinant based approach with an 

alternative approach. The alternative approach will give us a least-square estimate, obtained 

with the Gauss-Newton minimization algorithm. It will turn out that both problem solving 

methods have advantages and disadvantages while showing a similar overall-performance. The 

simulation tests in chapter 4.2 will also show that the best results will be given when we refine 

the determinant-based results by a nonlinear regression and apply then the error estimation 

algorithm of the determinant-based approach. Nonetheless, we will not discuss the nonlinear 

regression method in this thesis. A comprehensive description of the method and the used R 

function is provided by Ritz and Streibig [79]. Both decomposition algorithms were programmed 

respectively wrapped in the function decompose_OSLcurve(). Both methods need input 

conditions, which are provided by the function calc_OSLintervals(). 
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CW-OSL decomposition by determinants 

First, we reduce equation (3.2) to a system of K equations. Thus, we can accumulate the data 

points of a CW-OSL record into K signal bins to improve signal-to-noise ratio. For simplicity, we 

will discuss the following method at the example of a 2-component case.  But for cases with more 

components, the approach will be the same. The 2-component case will be defined by an 

arbitrary fast decaying component and an arbitrary slow decaying component. The decay 

constants 𝜆F and 𝜆  of both components are known while their component intensities 𝑛F and 𝑛  

are unknown. We divide the CW-OSL curve into two intervals: The first interval begins at 𝑡0 = 0 

and ends at some time 𝑡1. The interval boundary 𝑡1, like any other interval boundary, has to be a 

multiple of the channel time ∆𝑡. This way, we assure that no data point is shared by two intervals. 

The second interval begins at 𝑡1 and ends at 𝑡end, the end of the optical stimulation. The signal 

bins 𝑏1 and 𝑏  created from these intervals are calculated by: 

𝑏1 = ∫ 𝐼(𝑡)

𝑡1

𝑡0

= ∑𝐼𝑖 

𝑡1
∆𝑡

𝑖=1

 𝑏 = ∫ 𝐼(𝑡)

𝑡end

𝑡1

= ∑ 𝐼𝑖 

𝑡end
∆𝑡

𝑖=
𝑡1
∆𝑡

+1

 (3.14) 

In principle, the interval boundaries can be chosen freely. The following math will still work if we 

define overlapping or very short intervals. But the restriction we applied when setting 𝑡1 as 

interval divider is necessary for error calculation and SNR optimization as we will see later. With 

the signal bins 𝑏1 and 𝑏  defined, we can now build a simple equation system: 

𝑏1 = 𝑛F𝑃F1  𝑛 𝑃 1 

𝑏 = 𝑛F𝑃F2  𝑛 𝑃 2  

(3.15) 

The decay probabilities P are constants and are calculated by: 

𝑃F1 = 1− e−𝜆F𝑡1 

𝑃F = e−𝜆F𝑡1 − e−𝜆F𝑡end 

𝑃 1 = 1 − e−𝜆 𝑡1 

𝑃  = e−𝜆 𝑡1 − e−𝜆 𝑡end 
(3.16) 

We choose Cramer’s rule [76], [85] to solve equation (3.15). We build the matrices 𝐴, 𝐴𝑘=1 and 

𝐴𝑘=  according to Cramer’s rule from the constants of the equation system: 

 =  
𝑃F1 𝑃 1
𝑃F 𝑃  

   F =  
𝑏1 𝑃S1
𝑏 𝑃S 

    =  
𝑃F1 𝑏1
𝑃F 𝑏 

  (3.17) 
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Then, the signal intensities 𝑛𝑘 are given from the ratios of the determinants: 

𝑛F = 
det  F

det  
 𝑛 = 

det   

det  
 (3.18) 

We can solve the determinant ratios with the help of the Laplace expansion [85]: 

𝑛F = 
𝑏1𝑃S − 𝑏 𝑃S1 

𝑃F1𝑃S − 𝑃F 𝑃S1
 𝑛 = 

𝑏 𝑃F1 − 𝑏1𝑃F  

𝑃F1𝑃S − 𝑃F 𝑃S1
 (3.19) 

The introduced procedure can be applied to any number of components, as the source code of 

decompose_OSLcurve() demonstrates (appendix A.2). Figure 3.4 displays the same 

procedure for the 3-component case as flow chart. 

The disadvantage of using Cramer’s rule is that with increasing number of components, the 

necessary computing time increases strongly [86]. So why not using a more efficient way of 

solving equation systems, like for example Gaussian elimination? First, most quartz OSL samples 

are described sufficiently with 3 to 5 components, as we will see later in chapter 5. So, 

computational costs remain small. Second and more important: As (3.19) demonstrates is the 

equation system solved purely analytical. This allows us to develop an error estimation 

approach, which is also solely analytical. 

Error calculation 

We will use the method of propagation of uncertainty in indirect measurements. See for example 

chapter 8 of Fornasini [87] or the GUM guideline [88] for a detailed introduction into this 

method. Under the assumption of statistically independent measurements X, Y, …, can the 

uncertainty 𝜎𝑍 of an indirectly achieved measurement Z be estimated by: 

 =  ( ,  ,… ) 𝜎𝑍 = √ 
  ( ,  , … )

  
 
 

𝜎 
   

  ( ,  ,… )

  
 
 

𝜎 
    (3.20) 

This equation is also known as Gaussian error propagation.  

We will continue with the 2-component case for simplicity. If we replace   in (3.20) with 𝑛F and 

 ( ,  ,… ) with equation (3.18), then we get: 

𝜎F = 
1

det  
√ 

 det F

 𝑏1
 
 

𝜎1
   

 det F

 𝑏 
 
 

𝜎 
   (3.21) 
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Here 𝜎1
  and 𝜎 

  are the uncertainty of the signal bin values 𝑏1 and 𝑏  and will be discussed soon. 

If we apply the Laplace expansion onto (3.21) like we have done for (3.19), we get: 

But are we allowed to use the Gaussian error propagation (3.20) in the first place? The 

propagation of uncertainty method presumes an approximately linear behaviour of the 

investigated function in the statistical uncertainty of its input measurement values. As can be 

seen in (3.19) and can be proved with the Leibniz formula for any determinant, the values of 

det  and det 𝑘 do change linearly with the change of any single matrix element. The linearity-

requirement is fulfilled because every signal bin value 𝑏𝑗 (j = bin index) appears just once in a 

matrix  𝑘. Another requirement behind the equations (3.20) and (3.21) is that all signal bin 

values 𝑏𝑗 are statistically independent. In other words, they are not allowed to be correlated to 

each other regarding their uncertainty caused by instrumental or statistical noise. We ensured 

this by our definition of non-overlapping intervals in equation (3.14). The math presented here 

would still work in case of overlapping intervals, but we would have to add covariance terms to 

(3.20). These covariance terms need correlation coefficients as input parameters which we 

would have to obtain somehow. We avoid this additional layer of complexity with the 

requirement of non-overlapping integration intervals.  

The signal bins 𝑏𝑖 are uncorrelated regarding statistical errors, but they are not uncorrelated 

regarding systematic errors. Systematic errors could be unexpected OSL curve shapes due 

incorrect or incomplete global curve fitting or the occurrence of a significant signal offset due 

not corrected background. Even if systematic errors are somehow correctly incorporated into 

the uncertainty 𝜎𝑖, equation (3.20) would not support their propagation into  𝜎𝑘 due to the 

independence-requirement. 

However, to calculate the error 𝜎k of a component’s intensity value, we need values for the signal 

bins uncertainty 𝜎𝑗 in the first place. One approach is to develop a noise model for the 

measurement system used. A noise model would allow us to calculate 𝜎𝑗 from the signal intensity 

and the detection settings. This is a reasonable approach if a signal bin consists of just one data 

point or if the data points in a signal bin are not ordered by time but by some other property, like 

spatial or spectral location. One example of this are spatially resolved CW-OSL measurements 

with a CCD camera, where Greilich et al. [89] proposed a noise model. 

We can also evaluate a noise model for PMT measurements, like various authors have already 

discussed in detail [70]–[72], [90], [91]. In the simplest case, we assume Poisson-distributed 

errors [92]. But that would lead to error underestimations, because we would ignore the 

detector noise at least partly  [70], [91]. We can also apply other models which either need 

separate background measurements or exact knowledge about the instrumental noise function 

𝜎F = 
√𝑃S 

 𝜎1
  (−𝑃S1)

 𝜎 
 

𝑃F1𝑃S − 𝑃F 𝑃S1
  

(3.22) 
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[93]. But neither of both might be available if we analyse a data-set from an archive or another 

workgroup. We will surpass this problem by using a statistical approach which doesn’t need 

input parameters or noise model assumptions. 

The idea is to calculate the signal bin errors from the residual curve we get if we subtract the 

fitting model expected OSL curve from the actually measured OSL curve. We calculate the 

expected OSL curve by inserting the decay constants 𝜆𝑘 we found in step 1 and the component 

amplitudes 𝑛𝑘 from equation (3.18) into equation (3.2). For the 2-component case, the expected 

measurement value 𝐼𝑖
∗ for any channel 𝑖 with the channel width ∆𝑡 is given by: 

𝐼𝑖
∗ = 𝑛F(e

−𝜆F(𝑖−1)∆𝑡 − e−𝜆F𝑖∆𝑡)  𝑛 (e
−𝜆 (𝑖−1)∆𝑡 − e−𝜆 𝑖∆𝑡)           𝑖 = 1, 2, 3,… ,𝑁  (3.23) 

The residual between 𝐼𝑖
  and 𝐼𝑖

∗ allows us to calculate the corrected sample variance for the data 

points inside the measurement interval of a signal bin. Because a signal bin value is the sum of its 

data point values, the signal bin variance is also the sum of its data point variances (see rule of 

Bienayme ). Thus, the standard deviation 𝜎𝑗 of a signal bin 𝑏𝑗 containing 𝑁𝑗  data points is given 

by: 

𝜎𝑗 = √
𝑁𝑗

𝑁𝑗 − 1
 ∑ (𝐼𝑖 − 𝐼𝑖

∗)
 

𝑡𝑗
∆𝑡

𝑖=
𝑡𝑗−1
∆𝑡 +1

 

𝑖 = 1, 2, 3, … ,𝑁       𝑁 = ∑𝑁𝑗  

𝑁𝑗 =
𝑡𝑗 − 𝑡𝑗−1

∆𝑡
 

(3.24) 

Applied to our 2-component example, we get:  

𝜎1 = √ 𝑁1

𝑁1 − 1
 ∑(𝐼𝑖 − 𝐼𝑖

∗)
 

𝑡1
∆𝑡

𝑖=1

 𝜎 = √
𝑁 

𝑁 − 1
 ∑ (𝐼𝑖 − 𝐼𝑖

∗)
 

𝑡end
∆𝑡

𝑖=
𝑡1
∆𝑡

+1

 

𝑖 = 1, 2, 3, … ,𝑁 

𝑁 = 𝑁1  𝑁  

(4.25) 

Inserting the uncertainties 𝜎1 and 𝜎  into equation (3.21) allows us to calculate the component 

error 𝜎𝐹 without any a priori knowledge of the instrumental noise.  

Equation (3.24) has two constraints: First, at least two data points per signal bin are needed to 

calculate the sample variance. To solve this issue, a side-condition was programmed into 

calc_OSLcurve(): If a bin 𝑏𝑗 consists just of one data point 𝐼𝑖, Poisson-statistics is assumed 

and the bins signal value is used as variance value (𝜎𝑗
 = 𝑏𝑗 = 𝐼𝑖). Second, if a bin 𝑏𝑗 consists of 

just a few data points, then the random scattering of these few data points have a large effect on 
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the particular value of 𝜎𝑗
 . Depending on the pre-factor of  𝜎𝑗

  in equation (3.20), this effect might 

lead to a significant over- or under-estimation of the component error 𝜎𝑘
  in some cases. Thus, 

the precision (not the accuracy) of determining  𝜎𝑘
  can be expected to be lower than from other 

error estimation approaches like Monte Carlo simulation or χ² evaluation. 

The exact outcome of the presented error estimation procedure, however, relies on the chosen 

time intervals 𝑡𝑗
  when defining the signal bins. The uncertainty values 𝜎𝑘

  are also estimates of 

the precision in calculating the component amplitudes 𝑛𝑘
 . Thus, finding the optimal interval 

boundaries is vitally important for the performance of the method.  

Interval determination 

While setting up an equation system and applying Cramer’s rule allows us to set the integration 

intervals arbitrarily, the error estimation procedure is in need of independent intervals. The 

requirement of signal-to-noise ratio optimization demands the use of all data points of a 

measurement. These constraints lead to the following rules: The intervals shall cover the whole 

OSL curve and shall be divided by boundaries given by discrete time stamps 𝑡𝑗. Therefore, for 

decomposing an OSL curve with 𝐾 components, 𝐾 –  1 time parameters 𝑡𝑗 = 𝑡1, … , 𝑡𝐾−1 have to 

be set, with 𝑡0 and 𝑡𝐾 are already set by the start and the end of the measurement. 

Again, we can consider a variety of approaches. We can minimize 𝜎𝑘
  in the error propagation 

equation (3.20) for every single CW-OSL curve. All input parameters in (3.20) are functions of at 

least one 𝑡𝑗. So 𝜎𝑘
  is a function of all 𝑡𝑗. Because this minimization problem is hard to solve in 

case of more than two components, a numerical approach might be considered. But this would 

not just add significant computing time; also would every OSL curve create its own set of interval 

parameters. The exact interval parameters of each OSL curve would rely on the exact distribution 

of signal intensity in each particular curve, including deviations due to random and systematic 

errors. Errors of second order would be induced, creating additional sources of uncertainty not 

covered by our error estimation approach. Alternatively, we could apply the same minimization 

approach to the global OSL curve, created in step 1. Thus, every OSL curve of a data set would 

use the same integration intervals and curve-to-curve variations would not change any 

parameters, besides the signal bin values 𝑏𝑗. Still, we would reach an approximately near-

optimum SNR for each curve. If signal sensitivity is the most important feature, this approach is 

recommended. 

Here, we will use another approach instead. We formulate the requirement to determine the 

interval parameters independently from the component intensities. Two related data sets with 

the same detection settings and the same set of signal components shall use the same set of 

intervals. This way, we can compare and adopt methodical findings from one data set to another. 

We also set the requirement to maximize the mathematical independence between the 

components. In some data sets, we may experience over- or under-fitting or changing decay 

kinetics over the measurement duration or some other unexpected component behaviour. We 



 

28 
 

want to minimize the impact of occurring systematic errors in a components calculation path 

onto the decomposition results for the other components. 

The idea is to maximize the value of det   for a given set of decay constants and channel settings. 

We formulate two arguments for doing this. Both arguments are based upon hypotheses and 

have yet to be proven for mathematical validity, which will not be done in this thesis. 

Nonetheless, the simulation results in chapter 4.2 and the experience gathered in the analyses of 

actual data sets show that this approach works reasonably well for the vast majority of CW-OSL 

measurements. 

The first argument is based on equation (3.21). There, the component intensity error 𝜎𝑘 

(respectively 𝜎𝐹 in that example) is inversely proportional to the value of det  . Without 

considering the terms inside the square root and their alteration, we can assume that 

maximizing  det  decreases the error value 𝜎𝑘 and therefore increases the SNR of the intensity 

value 𝑛𝑘. When we take the square root term also in consideration, the lowest error 𝜎𝑘 probably 

does not correspond exactly to the maximum of det   for most OSL curves. Nonetheless, we 

formulate the hypothesis that the maximum of  det   corresponds to component intensity 

uncertainty values 𝜎𝑘 and with it to a SNR value which is sufficiently close to the best achievable 

SNR values for the majority of CW-OSL curves. 

The second argument is based on geometric considerations: We build matrix A from a set of 

linearly independent vectors �⃗�𝑘. Each vector is the combination of a series of 𝑗 =  1, … , 𝐾 de-

trapping probabilities 𝑃𝑗 of one particular signal component k.  The exact values of 𝑃𝑗 depend not 

just on the interval boundaries 𝑡𝑗 but also on the decay constant 𝜆𝑘. If we change 𝜆𝑘, we change 

also the values of the elements 𝑃𝑗 and with it the direction of the vector �⃗�𝑘. We conclude that 

every uncertainty of  𝜆𝑘 leads to an uncertainty in the direction of �⃗�𝑘. When maximizing the 

value of the determinant, then we maximize also the angles between the vectors �⃗�𝑘 (see the 

geometrical meaning of determinants in chapter 16 in Arens et al. [94]).  A maximum in the sum 

of angles between vectors leads to a minimum of propagation of uncertainty from the vectors 

into the determinant value. We can formulate the following hypothesis: A maximum in the value 

of  det   corresponds to a minimum of uncertainty in the value of det , caused by the unknown 

statistical and systematic errors from the deployed decay constants  𝜆𝑘.  

The challenge is to find the maximum of  det   in dependence of its interval boundaries 𝑡𝑗. In 

case of a 2-component system were we have to calculate just the value of 𝑡1, we can solve this 

problem analytically:  

𝑡1 = 
 n ((1 − e−𝑡end𝜆 )𝜆F) −  n ((1 − e−𝑡end𝜆F)𝜆 )

𝜆F − 𝜆 
 (3.26) 

To meet some earlier requirements, the value of 𝑡1 will be rounded up to the next higher multiple 

of the channel time. Note that if we set 𝑡end = ∞, 𝑡1 becomes the inverse of the logarithmic mean 
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between 𝜆F and 𝜆 .  

Calculating the whole set of 𝐾 −  1 interval boundaries for data sets with 𝐾 > 2 components is 

more complex. An analytical solution for the 3-component solution was tried but not solved 

successfully. Instead the problem will be solved numerically by varying all 𝑡𝑗 until the largest 

value for  det   is found. This is realized in the function calc_OSLintervals() which is 

executed directly after the global decay constants were calculated. Accordingly, 

calc_OSLintervals() is executed just once per data set. To calculate the maximum 

determinant, the following algorithm is applied: 

1) Define 20 ⋅ 2𝐾 random sets of 𝐾 –  1 interval boundaries 𝑡𝑗 = t1, … , tK−1 . Replace 

interval sets which contain 𝑡𝑗 duplicates. 

2) Build the matrix A and calculate its determinant for each set of interval boundaries. 

3) Sort the  det   values and create a subset from the highest 10% of determinants 

4) Extract the minimum and the maximum time mark from each interval boundary. 

Redefine the allowed value range with the minimum/maximum time marks and go back 

to step 1. 

5) If all determinants in the 10% subset have the same value, return the first interval set in 

the subset as final result 

6) For usual cases with between 3 and 5 components, this algorithm needs in the order of 

103 determinant calculations to return an optimized set of interval boundaries. 

Unfortunately, the algorithm results are not reproducible, although just varying slightly. 

Repeated runs may lead to different interval sets, which is an indication that rather local 

maxima than global maxima are found. The missing reproducibility leads to the 

conclusion, that the algorithm needs further improvement or should be replaced entirely. 

Nonetheless, as an easy-to-implement and practical solution it proved itself sufficient.  

 

The source code of calc_OSLintervals() can be found in appendix A.3. 
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 Step 3 – Component-wise dose calculation 3.3

So far, we discussed the identification and separation of signal components in a set of CW-OSL 

measurements. Now we focus back to the application of retrospective dose determination. We 

want to calculate the dose information hidden in the decomposition results and estimate the age 

of the sample. The task of step 3 is to find a historical or palaeolithic dose or ‘paleodose’ in short. 

If an environmental dose rate is given for a sample, this paleodose can be converted into an age. 

The chosen methods and their parameters depend on the sample mineral type, its 

geomorphologic history, the quality of the data set and the laboratories preferences. But it is not 

task of this thesis to investigate and discuss the variety of methods. We will go strictly with the 

‘default’ approach described by Murray, Wintle and Galbraith in their publications [19], [35], 

[71], [95]. Note that all data sets we will discuss in chapter 5, were analysed with that approach, 

even if other approaches would be better suiting. 

L/T table 

Table 3.2:   L/T table example; Fastest decaying component of the first aliquot for the K = 4 case in 

sample BT594. Test dose for generating all Ti is: DT = 19.4 Gy 

Cycle i Dose (Gy) 𝑳𝒊 𝑻𝒊 𝝈𝑳𝒊 𝑻𝒊
 𝑳𝒊 𝝈𝑳𝒊 𝑻𝒊 𝝈𝑻𝒊

 

0 natural 3.13 0.16 5638 99 1801 86 

1 19.4 1.08 0.05 1984 46 1831 70 

2 48.3 2.32 0.13 4444 116 1914 93 

3 83.9 3.63 0.11 7192 187 1979 34 

4 103.2 3.96 0.17 8527 271 2154 65 

5 19.4 1.15 0.05 2625 92 2289 64 

6 0 0.00 0.02 -26 49 2311 72 

 

First, we have to structure the OSL decomposition results and set them into relation with the 

regenerated doses. We assume the data set is sequenced in accordance to the standard SAR 

protocol defined by Murray and Wintle [19]. Then every OSL measurement returns a value 𝐿𝑖 

and is followed by the regeneration of a fixed test-dose and the measurement of the OSL signal 𝑇𝑖 

related to this test-dose. The normalized OSL signal is therefore given by 𝐿𝑖 𝑇𝑖. 

A L/T table provides a structure for the signal values and dose regeneration points we need to 

build dose-signal curves and to test for signal behaviour criteria. One L/T table per signal 

component and aliquot is built. To avoid some potential issues, we apply the following conditions 

when assigning the signal values to the table: 

 The decomposition process returns also a residuum value 𝑟𝑘 for each component. This 

residuum value indicates the part of the signal component intensity 𝑛𝑘 which could not be 

measured because the stimulation ended. We assume that this residuum signal would be 
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carried into the signal of the next OSL measurement. Therefore, we subtract the residuum 

values 𝑟𝑘 from the 𝑛𝑘 values of the subsequent OSL curve. This enables reasonable L/T 

table estimates for slow decaying components. 

 In case of long OSL measurement times, it is useful to shorten the OSL curves to prevent 

over-fitting in step 1 and declining fast component precision in step 2 (See chapter 4). In 

case of a shortened OSL curve, we use 𝑟𝑘 as rejection criterion for the whole L/T table. Is 

the value of 𝑟𝑘 larger than 1% of 𝑛𝑘, the we discard the table.  The component can’t be 

further evaluated and misleading conclusions are avoided. 

 Negative values of 𝐿𝑖 𝑇𝑖 will be set to 𝐿𝑖 𝑇𝑖 = 0 to avoid runtime exceptions in the later 

used R functions. In addition: Although negative values are mathematically reasonable, it is 

discussable if they are also physically reasonable. 

 

The L/T table is created by decompose_SARdata(). This function does also call the function 

decompose_OSLcurve() to decompose all CW-OSL curves in a SAR-compatible data set. It 

does also perform the rejection tests and hand over the L/T tables to 

Luminescence::plot_GrowthCurve(). 
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Growth curve 

 
Figure 3.4:  Signal-dose curve example; Fastest decaying component of the first aliquot of sample 

BT594, plotted by Luminescence::plot_GrowthCurve().    

Lower left: Distribution of Monte Carlo simulated De values, used to calculate the De error 

value. Lower right: Variation of the normalized test-dose signal over the measurement 

sequence, useful to display luminescence sensitivity changes. 

 

From the L/T table, we create a signal-dose curve or ‘growth curve’ by calling the function 

Luminescence::plot_GrowthCurve() programmed by Kreutzer and Dietze [96]. The 

function plots the luminescence signal values 𝑦 = 𝐿𝑖 𝑇𝑖 against the regeneration doses 𝑥 =  𝐷𝑖. 

Several fitting models are selectable. We will use the default model: 

𝑦(𝑥) = 𝑎(1 − 𝑒−(𝑥+𝑐) 𝑏) (3.27) 

Here a, b and c are fitting factors. The natural or ‘equivalent’ dose De related to the natural 

luminescence signal is calculated by solving 𝑦(𝐷𝑒) = 𝐿0 𝑇0. The uncertainty of the equivalent 

dose De is calculated by a Monte Carlo simulation assuming normal distributed 𝐿𝑖 𝑇𝑖 values with 

a standard deviation equal to  𝜎𝐿𝑖 𝑇𝑖 . 
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Rejection criteria 

The equivalent dose values calculated so far, are not necessarily physical meaningful. Murray and 

Wintle [19] introduced two tests to detect and reject not trustworthy De values: the recycling 

ratio and the recuperation rate. We use their range of acceptance proposals to keep or discard 

equivalent dose values. 

 

Table 3.3:   Rejection criteria for equivalent dose values De, measured and calculated according to the 

SAR protocol by Murray and Wintle [19]. 

Criterion Formula Range of acceptance 

Recycling ratio 𝑟 𝑒𝑐 𝑐 𝑖  =
𝐿1 𝑇1

𝐿 𝑖= 1
 𝑇𝑖

 0   𝑟 𝑒𝑐 𝑐 𝑖   1 1 

Recuperation rate 𝑟 𝑒𝑐  𝑒  𝑡𝑖  =
𝐿 𝑖=0 𝑇𝑖

𝐿0 𝑇0
 𝑟 𝑒𝑐  𝑒  𝑡𝑖   0 0  

 

Recycling ratio test 

In the SAR protocol, the first and usually the last dose regeneration cycle apply the same dose 𝐷1 

(=recycled dose). The corresponding normalized luminescence signals 𝐿1 𝑇1 and 𝐿 𝑖= 1
 𝑇𝑖 

should be about equal. If the ratio between both differs significantly from one, it implicates that 

the applied doses cannot be monitored precisely and the resulting equivalent dose should be 

discarded. But the recycling ratio calculation is quite noise-sensitive, especially if small test 

doses are chosen. For low-SNR data sets, false positive as well as false negative aliquot rejections 

are likely. 

 

Recuperation test 

In the regeneration cycle after the cycle with the largest applied dose, usually no dose is applied 

before measuring 𝐿𝑖. If no dose is applied, the corresponding normalized luminescence signal 

𝐿𝑖 𝑇𝑖 should be about zero. The occurence of significant luminescence signal hints towards the 

appearance of charge transfer into the observed OSL traps unrelated to dose regeneration.  
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Paleodose and age estimation 

We will use two statistical models to calculate the sample age from a distribution of equivalent 

dose values. Both models are common in the geo-scientific community: The central age model 

and the minimum age model. Both models were introduced by Galbraith et al. [95] and are 

comprehensibly recapitulated and summarized in Galbraith and Roberts [71].  

 

Central age model 

The central age model (short: ‘CAM’) assumes that the logarithmic values of the equivalent doses 

 og(𝐷e) are approximately normal distributed. It is assumed that this normal distribution arises 

not just from statistical errors but also from unknown geologic or physical uncertainties. The 

CAM algorithm calculates a variance-weighted arithmetic mean from the values but includes an 

uncertainty parameter in the weighting term, called ‘overdispersion’. The overdispersion 𝜎𝑏 is 

used as second fitting parameter besides the paleodose. If the scattering in the 𝐷e-distribution is 

just caused by instrumental errors, then the overdispersion should be around zero. We will 

calculate the CAM paleodoses and overdispersion values using Luminescence::calc 

_CentralDose() programmed by Burow [97].  

 

Minimum age model 

The central age model does not take into account that the sample might be bleached 

incompletely before the burial event. In that case, a stretched 𝐷e-distribution towards higher 

doses is assumed. The central age model would lead to over-estimated paleodoses, so Galbraith 

et al. added an additional fitting parameter to the CAM approach to compensate for the 

spreading. If the paleodose from this minimum age model (short: ‘MAM’) is significantly lower 

than the CAM paleodose, incomplete bleaching before burial is likely. We will calculate the MAM 

paleodoses using Luminescence::calc_MinDose() also programmed by Burow [98]. 

The decision which age model to apply is done by considering the likely geomorphologic 

sediment accumulation event. Did the sediment accumulate slowly and all sample grains can be 

considered well bleached? Or did the sediment accumulate in one single event? Then many 

grains may never be exposed to sunlight long enough to be fully bleached.  
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4 Method verification: 
Simulated OSL curves 

The methods introduced in chapter 3.1 and 3.2 need to be tested for reliability and accuracy. We 

will do this by simulating a large number of OSL curves with varying parameters. As parameters 

we will chose OSL properties like the number of components and their amplitudes and detection 

parameters like channel width and signal background. We will vary each parameter by two to 

four steps inside reasonable margins. As reasonable margins, we will consider typical values 

obtained from 470 nm stimulated CW-OSL measurements of quartz. The correlation between 

input parameters and output values gives us not only a measure for the methodical accuracy and 

precision but will also help us to identify systematic errors and methodical limits. In addition, we 

get the opportunity to test algorithm options like the   -weighting (see equation (3.6) and (3.7)) 

and the choice between determinant-based or regression-based decomposition. 

For the OSL curve creation, the function simulate_OSLcurve() was programmed.  It builds 

CW-OSL curves according to equation (3.2). All component parameters and also the detection 

settings can be chosen freely. The simulated signal values are scattered randomly in accordance 

to the Poisson distribution with stats::rpois(). This emulates photon shot noise. In most of 

the simulations, a signal background is added. The background signals are also Poisson-scattered 

to emulate dark current noise.   

 The definition of the parameter spaces and the data evaluation are handled by Rmarkdown 

scripts. For the step 1 and step 2 simulation data sets, correlation matrices were calculated, 

using stats::cor(). As measure of association, Kendall’s 𝜏 [80], [99] was chosen. Simplified 

spoken, Kendall’s 𝜏 measures whether the values of two variables will be ranked in the same 

order if they are sorted as pairs or if they are sorted separately. The values of 𝜏 will always lie in 

between −1   𝜏  1. If 𝜏 → 1 then the variables are correlated (ranking the value lists as pair or 

as single lists leads to about the same order); if 𝜏  0 then the variables are uncorrelated; if 

𝜏 →  −1 then the variables are anti-correlated (the single-list-order vs. pair-order is inverted). 

For table 4.4 Spearman’s 𝜌 [80] was tested as alternative correlation measure. The results were 

qualitatively the same. Kendall’s 𝜏 was chosen because of its better robustness against outliers. 
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 Step 1 reliability 4.1

Does the method described in chapter 3.1 find the number of components and their 

corresponding decay constants with sufficient certainty? Which particular threshold value of F 

will return the best possible results? How does the method depend on the detection settings? 

These questions are evaluated by the script Test_Step1.Rmd. Nine parameters are defined, 

summarized in table 4.1. The parameter variants lead to a total of 10368 combinations. For each 

parameter combination, one global CW-OSL curve was simulated. Each curve was analysed by 

fit_OSLcurve(). Four of the nine parameters are intensity value of CW-OSL components. 

Curves with less than four components are created by setting one or more components to an 

intensity of n = 0. The decay constants are set to constant values which correspond roughly to 

the known major quartz OSL components at standard blue CW-OSL SAR measurement 

conditions (see chapter 2.3). 

 

Table 4.4:   Input parameters for the step 1 simulations 

 Parameter Input variants 

OSL components 

Fast   (𝜆 = 2 s−1) n = 0, 1000, 3000, 10000 

Medium  (𝜆 = 0   s−1) n = 0, 1000, 3000, 10000 

Slow1  (𝜆 = 0 1 s−1) n = 0, 3000, 10000 

Slow2  (𝜆 = 0 02 s−1) n = 10000, 30000, 100000 

Detection settings 

Channel width Δ𝑡 = 0 1, 0 2, 0   s 

Number of channels 𝑁 = 100, 400 

Background signal 𝑏 = 0, 20, 40 cts s−1 

Curve additions 𝑀 = 100, 400 

Method options χ² weighting 𝜎 = 1, 𝐼𝑖  

 

The simulation and fitting process of all 10368 curves took 2 days and 6 hours on a desktop PC 

with Intel core2 duo E7500 CPU. Most of the CPU time was used by the fitting function 

fit_OSLcurve(). This leads to a mean time consumption of about 20 seconds per run on this 

rather old PC.   
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Determining the best threshold value for the F-test 

The true number of components in a data set is determined by a statistical test, the F-test. The F 

value measures the fit quality improvement after adding another component to the fitting model. 

But which particular threshold value for F is the best-suiting for our method? We know from the 

discussion in chapter 3.1 and the case studies in chapter 5 that the literature-proposed threshold 

of     3 is too low for our purposes. We will use the distribution of F-values in our simulation 

results to estimate a higher but still sufficient threshold value. 

To achieve this, we have to narrow the data set to sufficiently fitted curves: 

1) Set those F-table lines as correct fit, where the number of input components 𝐾in
  equals 

the number of found components 𝐾out
 . Curves where the maximum number of found 

components is smaller than the number of input components are excluded (724 of 10368 

curves). 

2) Exclude curves simulated with [N = 400, ∆t = 0.5, b = 20 or 40] or [N = 400, ∆t = 0.2, b = 

40]. Thus we eliminate curves which are background-dominated and therefore fitted 

insufficiently with a high likelihood (1728 of 9644 curves). 

3) Exclude curves where the calculated decay constant of any component differs more than 

10 % from the expected value to ensure just sufficiently fitted curves remain (2336 of 

7916 curves). Component slow2 shall be excluded from this rule, because slow2 might be 

influenced by the background signal.  

We split the remaining 5580 curves into weighted and not weighted χ² calculations, see equation 

(3.6) and (3.7). Figure 4.1 shows the distribution plots of  𝐾 and  𝐾+1. A threshold value close to 

the  𝐾+1 peak (blue curve) would lead to too many over-fitted results. A threshold value close to 

the  𝐾 peak (red curve) would lead to too many under-fitted results. 

 

Figure 4.1:  Distribution of F values for reduced simulated data set.   

Red:  𝐾  values comparing the correct 𝐾out
 = 𝐾in fit with the previous 𝐾out

 = 𝐾in − 1 fit 

Blue:  𝐾+1 values comparing the over-fitted 𝐾out
 = 𝐾in  1 fit with the 𝐾out = 𝐾in

  fit 
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Both   
 -weighting approaches lead to similar F-distributions, as expected from the discussion in 

chapter 3.1. The   
 -weighted approach lead to a slightly more narrow  𝐾+1 distribution. There is 

an overlap between  𝐾 distribution and  𝐾+1 distribution, so no particular threshold value 

assures certainty in detecting the right number of components K. But a good trade-off with a low 

likelihood of under-fitting and over-fitting for both   
 -cases represents: 

 th esho d =  0 (4.1) 

 

We will apply this particular value in all further data analyses in this thesis. 

Performance test summary and χ² approach comparison 

With a calibrated threshold value for F defined, we are able to fully analyse the data set with the 

step 1 method presented in chapter 3.1. But how can we decide, that the method did find the 

right number of components and the correct decay constants, without manually analysing every 

of the 10386 fitting outcomes? To do this, we define for the decay constants an input-output-

ratio attribute 𝑅𝜆 and a deviation-from-perfect-match attribute 𝐷𝜆. We define also a discrepancy 

attribute Δ𝐾 for the component numbers: 

𝑅𝜆 =
𝜆out
𝜆in

 

(4.2) 
𝐷𝜆 = |1 −

𝜆out
𝜆in

| 

Δ𝐾 = 𝐾out − 𝐾in 

Δ𝐾 gives us a measure of over- and under-fitting; 𝑅𝜆 gives us a measure of decay constant over- 

and under-estimation, which we will call ‘accuracy’; 𝐷𝜆 gives us a measure of decay constant 

scattering, which we will call ‘precision’. Note, that 𝐷𝜆 still inherits systematic erros in 𝜆out  and 

is intrinsically correlated to 𝑅𝜆. With the test approach as described in this chapter, we cannot 

calculate an accuracy-independent measure of the precision. Nonetheless, if some other 

parameter is just weakly correlated with 𝑅𝜆 but strongly correlated with 𝐷𝜆 , it is evident, that 

this parameter influences the precision of the fitting. The association, which output component 

𝜆out belongs to which input component 𝜆in was performed by comparing all possible sets of 𝐷𝜆 

values and taking the set with the smallest sum. In case of an fake component caused by over-

fitting, the component with the largest deviation value 𝐷𝜆 was ignored in the further analysis. 
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The first issue we will look at, is the likelihood of over- and under-fitting and its dependence on 

the   
 -weighting approach. 

 

Table 4.5:  Simulation statistics of component number K in dependence of   
 -weighting approach.  

Green cells: Fraction of Δ𝐾 = 0  cases; Grey cells: Sample sizes 

 

As table 4.2 shows, the performance in finding the right number of components for both   
 -

approaches is about the same. Independent of the used   
 -approach, 73% of all curves were 

fitted with the correct number of components. In 6% of all cases, more than the expected 

components were found. In 21% of all cases, less than the expected components were found.   
 -

weighted curves had slightly less over-fitting events (5.7%, compared with 6.5%). Under-fitting 

was mostly caused by not detecting the slow1 component (75% of all under-fittings). In 38% of 

all cases, 𝐾out was not selected by the F criteria but because the K + 1 fit failed. 

The second issue we will look at, is the accuracy, precision and likelihood of finding the correct 

decay constants, also in dependence on the   
 -weighting approach. 

 

K = 1 2 3 4 Fittings 1 2 3 4 Fittings

1 87% 4.1% Under-fitting 129 90% 3.8% Under-fitting 130

2 13% 86% 15% 0.4% 1115 10% 88% 15% 0.4% 1113

3 10% 79% 36% 2572 8% 79% 37% 2582

4 6.1% 58% 1266 6% 59% 1280

5  Over-fitting 5.2% 102  Over-fitting 4.1% 79

Curves 108 864 2268 1944 =5184 108 864 2268 1944 =5184

O
u

tp
u

t 
K

o
u

t

χ² weighted

Number of components K in

χ² not weighted



 

40 
 

Table 4.6: Accuracy 𝑅𝜆, precision 𝐷𝜆 and success rate in determining the decay constants.   

The full data set is displayed, including under- and over-fittings. Q0.05 … Q0.95: Accuracy 

values for selected quantiles. Blue cells: Decay constant underestimation; Red cells: 

Decay constant overestimation. Green cells: High likelihood of accurate component 

determination. 

 

As Table 4.3 shows, the vast majority of all calculated decay constants lay within a ±10% range. 

Slow decaying components however, tend towards lower accuracy and higher probability of 

being not found or producing outlier values. Both   
 -approaches produce very similar outputs. 

But the   
 -not-weighted approach proves itself as slightly more robust and accurate in detecting 

the fast component. We conclude that the selection of the   
 -weighting approach is in most cases 

not relevant for the result of the method. We select the   
 -not-weighted approach as default for 

all further calculations in this thesis because of the dominant relevance of the fast component in 

quartz dating applications (see chapter 2). See equation (3.5) for details on this approach.  

No Yes No Yes No Yes No Yes

Q0.05 0.943 0.910 0.785 0.777 0.691 0.705 0.631 0.655

Q0.25 0.988 0.987 0.953 0.952 0.909 0.920 0.897 0.909

Median 0.998 0.997 0.991 0.991 0.981 0.986 0.995 0.998

Q0.75 1.003 1.001 1.004 1.003 1.013 1.018 1.042 1.066

Q0.95 1.021 1.018 1.065 1.059 1.507 1.725 2.266 2.205

97.4% 95.3% 83.7% 82.7% 65.5% 66.1% 52.8% 52.7%

99.95% 99.0% 95.8% 94.2% 73.8% 72.8% 96.6% 97.0%

Components

 χ² weighted?

Component found?

D λ  < 0.1

   R λ

Fast Medium Slow1 Slow2
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Correlation matrix 

We will classify parameter dependencies and identify further methodical issues with the help of 

correlation matrices. Table 4.4 displays a reduced version of the input-output correlation matrix 

and the output-output cross-correlation matrix which can be found in appendix B.1. The 

matrices cover all 5184 cases of   
 -not-weighted curve fittings. The calculation was performed 

by: 

stats::cor(… , use = "pairwise.complete.obs", method = "kendall") 

Table 4.7:  Step 1 simulation correlation table displaying Kendall’s 𝜏 between input values and 

selected output values. Values < 0.1 are considered as not significantly correlated and 

were deleted to improve clarity. Notation equals table 4.1 and equation set (4.2); the 

measurement length is given by 𝐿 =  ∆𝑡 ∗ 𝑁; Blue cells: positive correlation: increased 

input values lead to increased output values; Red cells: anti-correlation: increased input 

values lead to decreased output values 

 

All values inside the cells of table 4.4 are measures of correlation or anti-correlation. If two 

variables are most likely to be independent from each other than their correlation-cell remains 

blank.  

Table 4.4 and appendix B.1 allow the following statements about parameter dependencies: 

 ∆𝐾 is anti-correlated to 𝐾in: Cases with many components tend to under-fitting, cases with 

few components tend to over-fitting 

 In case of over-fitting (∆𝐾 > 1), additional components appear mostly between Medium 

and Slow2. This leads to an overestimation of 𝜆Fast and 𝜆Mediu  and an underestimation of 

𝜆  ow2. 𝜆  ow1 becomes uncertain 

 In case of under-fitting (∆𝐾  1), the missing component is mostly Slow1. This might lead 

K in Fast Medium Slow1 Slow2 L b M

∆K -0.27 -0.25 0.58

0.23 0.13

0.36 -0.13 0.10 -0.12 0.11 -0.10

0.21 0.12 -0.15

-0.33 0.12 0.16 -0.20 -0.22

-0.16 0.22 -0.41 0.21 -0.20

-0.30 0.29 0.17 -0.35 0.20 -0.12 -0.13

-0.37 0.14 -0.11 -0.25 0.19 -0.13

-0.44 0.20 0.21 -0.23 -0.32 0.32

χ² 0.21 0.33 0.38 0.11 -0.47

F K 0.44 -0.52 -0.34 0.30 0.16

Component 

numbers

Slow2

Slow2

Fit 

properties

Detection parameters

   R λ

   D λ

Medium

Medium

Slow1

Slow1

Shift/deviation

 of λ out

Fast

Fast

Signal amplitudes n in
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to an underestimation of 𝜆Fast and 𝜆Mediu  and an overestimation of 𝜆  ow2, but the 

correlation is much weaker as in the over-fitting case 

 𝑛in is anti-correlated to 𝐷𝜆 and (weakly) correlated to 𝑅𝜆: With increasing component 

signal, the precision and accuracy in finding the correct decay constant increases 

 But 𝑛in and 𝑅𝜆 of nearby components are correlated: With increasing component signal, 

the precision in finding the correct decay constant decreases for the neighbour 

components 

 The detection background b has little to no effect on the fitting besides an underestimation 

of the slow decaying components, especially 𝜆  ow2 

 Increasing curve additions 𝑀 lead to higher precision in determining fast decaying 

components 

 Large channel widths ∆𝑡 and a high number of channels 𝑁, equal with long measurement 

times 𝐿, lead to over-fitting; Short measurement times 𝐿 lead to under-fitting 

 Short measurement times 𝐿 decrease the precision 𝐷𝜆 of slow decaying components 

  𝐾 statistics are shifted towards higher   values with increasing measurement time 𝐿 and 

in case of over-fitting and vice versa 

 But the fit-deciding FK+1 attribute has no significant correlation to any input parameter 

The biggest apparent problem is the dependency of ∆𝐾 on the measurement length 𝐿. Wrong 

channel settings lead to over- or under-fitting. Over- and under-fitting lead to shifted decay 

constants 𝜆out. This effect is probably the major constraint of the presented step 1 method. It 

might be worth a consideration to define the F threshold value as function of the measurement 

time 𝐿. Alternatively, the method could be allowed just for a pre-defined bandwidth of channel 

settings. 
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 Step 2 reliability 4.2

 
Figure 4.2:  Decomposition of arbitrary simulated CW-OSL curve; Upper-left: Simulated signal and 

component curves; Upper-right: The same curves but with logarithmic x- and y-axis; 

Lower-left: Residual curve with drawn-in signal bin intervals; Lower-right: Result table 

We test the accuracy and precision of the Step 2 algorithms by simulating various scenarios, 

similar to the approach used in the chapter 4.1. The input set of parameters is the same as for the 

step 1 simulations. But we remove the parameters χ² weighting and curve additions (see table 

5.1) and deploy the new parameters determine signal offset and decomposition algorithm instead. 

We give the determinant based algebraic decomposition approach the token det named after 

the R function to calculate determinants: base::det(). We give the alternative nonlinear 

regression approach the token nls named after the R wrapper for nonlinear least square 

methods: stats::nls(). We test also the algorithm det+nls. In this case, the det -results 

are refined by nls fitting. For error calculation, the det -procedure is applied but the nls -

results serve as input parameters for the OSL curve model. 

 

Table 4.8:   Input parameters for the step 2 simulations 

 Parameter Input variants 

OSL components 

Fast   (𝜆 = 2 s−1) n = 0, 1000, 3000, 10000 

Medium  (𝜆 = 0   s−1) n = 0, 1000, 3000, 10000 

Slow1  (𝜆 = 0 1 s−1) n = 0, 3000, 10000 

Slow2  (𝜆 = 0 02 s−1) n = 10000, 30000, 100000 

Detection settings 

Channel width Δ𝑡 = 0 1, 0 2, 0   s 

Number of channels 𝑁 = 100, 400 

Background signal 𝑏 = 0, 20, 40 cts s−1 

Method options 
Determine signal offset TRUE, FALSE 

Decomposition algorithm det,  nls,  det+nls 
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Table 4.5 gives 15552 variations of parameters. Unlike the step 1 simulations, where the signal 

noise was averaged by the curve additions, show the OSL curves significant noise this time. All 

15552 different OSL scenarios were simulated and decomposed 1000 times to account for the 

noise-caused randomization of the decomposition results. 

Performance & Robustness 

The simulation was performed on the same year 2011 PC as step 1, with an Intel core2 duo 

E7500 CPU (2 cores at 2.9 GHz). Simulating and decomposing each of the 15.6 million OSL 

curves took 3.5 days. A simulation subset was also executed at a year 2019 PC with AMD Ryzen 3 

2200G CPU (4 cores at 3.5 GHz). The modern PC needed about 60% of the time for the same 

calculations as the older PC. The average calculation times in dependence of the selected 

algorithm and the number of components K, are displayed in table 4.6. 

Table 4.9:  Computing time and failure rates of the decomposition algorithms. det = determinant 

based decomposition; nls = nonlinear regression with fixed λk’s; det+nls = det but 

with nls -refinement of the nk values. (*) in case of nls -failures, the det+nls returns 

the det determined values 

 

Although the det algorithm is not optimized and neither det nor nls are parallelized, are the 

necessary computing times of decomposing PMT-measured standard SAR data sets a matter of 

seconds. We can conclude that in case of much more data intensive measurement approaches, 

like spatial resolved EM-CCD measurements, computing times might be within acceptable 

margins. 

In none of the 5.2 million det-simulations, did the function decompose_OSLcurve() throw 

an exception returned none-finite values. For the 2.6 million nls-simulations without offset 

determination, 773 exceptions were counted. The nls -algorithm produced also 755 exceptions 

when performing det+nls decomposition without offset determination. But here the det -

results could still be given back. Adding an offset variable (see chapter 5.3) to the nls input 

model increased the number of failed fittings to about 16800 respectively 18100 (det+nls).  

K = det nls det+nls

1 2.4 ms 2.9 ms 4.9 ms

2 3.6 ms 3.4 ms 6.6 ms

3 4.9 ms 4 ms 8.5 ms

4 6.2 ms 4.8 ms 10.7 ms

0% 0.03% 0% (0.03%)*

0% 0.65% 0% (0.7%)*

without offset 

determination 

Decomposition method

with offset 

determination 

average 

computing 

time 

Failure 

rate
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For now, we exclude all data set entries with a simulated background signal and/or activated 

offset determination. We will investigate these background-related issues separately in chapter 

4.3. Thus, the following conclusions are just valid for measurements with no or accurately 

corrected signal background. 

Accuracy 

To investigate the accuracy of calculating the component intensity nk, we define a measure of 

accuracy 𝑅 . Unlike the accuracy measure  𝑅𝜆 used for Step 1, 𝑅  is calculated from all 1000 

simulation runs performed for one set of parameters.  This way, we can remove almost entirely 

the statistical influence of the simulated signal noise onto 𝑅 . The accuracy 𝑅  is defined by the 

ratio of the mean component intensity outcome of 𝑛out to the simulation input component 

intensity 𝑛in. 

𝑅 =
�̅�out

𝑛in
           �̅�out = ∑

𝑛i out

1000

1000

𝑖=1

 (4.3) 

Looking at the distribution of 𝑅 values from all 2592 parameter settings which don’t include the 

simulation or estimation of a signal background, we see none or only small deviations from the 

‘perfect-accuracy’ value 𝑅 = 1: 

Table 4.10:   Accuracy in the decomposition of simulated OSL curves without background 

signals.  

Blue cells: Signal component amplitude nk underestimation; Red cells: nk overestimation 

 

Significant inaccuracies can be observed just in a few extreme cases. For the nls and the 

det+nls algorithms show these extreme cases less deviation as for the det algorithm. 

  

Method det nls det+nls det nls det+nls det nls det+nls det nls det+nls

Minimum 0.942 0.991 0.986 0.949 0.971 0.962 0.902 0.908 0.924 0.967 0.959 0.965

Q0.05 0.996 0.997 0.997 0.991 0.992 0.993 0.988 0.990 0.991 0.998 0.998 0.997

Q0.25 0.999 0.999 0.999 0.999 0.998 0.998 0.998 0.998 0.998 1.000 1.000 1.000

Median 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Q0.75 1.001 1.001 1.001 1.002 1.001 1.001 1.002 1.002 1.002 1.000 1.000 1.000

Q0.95 1.004 1.004 1.003 1.011 1.008 1.008 1.009 1.011 1.011 1.003 1.003 1.002

Maximum 1.121 1.009 1.012 1.166 1.050 1.029 1.059 1.061 1.105 1.038 1.060 1.047

Slow2Slow1

Ratio R n  between real and decomposed signal amplidute n

Fast Medium



 

46 
 

Precision 

Repeated simulation runs for every set of parameters allows us to measure the decomposition 

precision. As measure of precision, we define 𝜎dec: 

  𝜎dec =
√∑ (�̅�out − 𝑛i out)

 1000
𝑖=1

𝑛in
− 

√𝑛in

𝑛in
 

(4.4) 

The first term is the relative standard deviation of the signal component intensity outcome. The 

second term accounts for the signal value scattering arising from Poisson-distributed noise 

simulation Thus, 𝜎dec measures the relative uncertainty, corrected for the fundamental 

uncertainty. Note, the inverse of 𝜎dec would be the shot noise corrected signal-noise-ratio.  

Table 4.11:   Distribution of the decomposition-caused uncertainty 𝜎dec for simulated CW-OSL 

curves without background signals and background estimation.  

 

For a large part of OSL curve scenarios, the decomposition precision is equal or close to the 

theoretical maximum, allowed by the noise-based signal scattering. For a fraction of OSL curves, 

however, an additional uncertainty caused by the decomposition method is added. This is 

especially the case for some of the medium and slow1 components. But there is no significant 

difference in precision between the methods. 

  

Method det nls det+nls det nls det+nls det nls det+nls det nls det+nls

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00

Q0.05 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.00 0.00 0.00

Q0.25 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.00 0.00 0.00

Median 0.02 0.02 0.02 0.06 0.06 0.06 0.07 0.08 0.08 0.01 0.01 0.01

Q0.75 0.05 0.04 0.04 0.15 0.14 0.14 0.17 0.16 0.15 0.02 0.02 0.02

Q0.95 0.14 0.11 0.11 0.36 0.33 0.33 0.67 0.64 0.67 0.23 0.23 0.22

Maximum 0.54 0.17 0.16 0.99 0.86 0.88 1.56 1.52 1.51 0.85 1.00 0.99

Algorithm-induced relative uncertainty  σdec

Fast Medium Slow1 Slow2
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Error estimation accuracy 

When reviewing the step 3 approach in chapter 3.3, the age calculation with the CAM and the 

MAM algorithm use the error values of the equivalent doses De to weight the De-distribution. The 

De-determination algorithm itself, uses a Monte Carlo approach to estimate these errors [96]. 

This Monte Carlo approach relies on the reliability of the component errors 𝜎𝑘, because these are 

used to randomize the Lx/Tx points. In conclusion, a high accuracy in estimating the component 

errors is an important quality criterion for a decomposition algorithm. 

We test this criterion by counting all cases, when the input value of the component intensity 𝑛in 

is located inside the 1-𝜎-error bar of the outcome value 𝑛out   𝜎out. Because the simulated 

uncertainty is based on the Poisson-distribution, it is reasonable to assume also a Poisson-

distributed signal error 𝜎in. The Poisson-distribution converges with the normal distribution 

with increasing statistical sample size. Therefore, we can conclude that according to the normal 

distribution, in around 68% of the cases 𝑛in lies within the decomposition results error ranges.  

Table 4.9:   Distribution of the error estimation accuracy depending of on the component and the 

decomposition method. Perfect accuracy is given at values around 68%. Higher values 

indicate error overestimation. Lower values indicate error underestimation. 

 

The results in table 4.9 show nearly perfect error estimation accuracies for the det algorithm. 

The statistical scattering in the results should be 68 3%   2 6% (1-𝜎) which is matched by the 

medium, slow1 and slow2 component error estimation accuracies distribution quite well. Only 

for the fast component, small case-depending inaccuracies can be observed. The nls method on 

the other hand, does systematically underestimated component intensity errors. Only for the 

slow2 component does nls work acceptably. The results of the det+nls method are centred at 

the correct error estimation values but show a significant case-dependency, which leads to 

sometimes over- and sometimes under-estimated errors. It is apparent that the nls-refining 

weakens the reliability of the det-error estimation algorithm. 

  

Method det nls det+nls det nls det+nls det nls det+nls det nls det+nls

Minimum 51% 6% 39% 62% 12% 43% 64% 23% 43% 62% 41% 41%

Q0.05 60% 12% 51% 65% 19% 53% 66% 32% 53% 66% 48% 52%

Q0.25 65% 19% 59% 67% 30% 63% 67% 47% 63% 67% 65% 62%

Median 67% 27% 65% 68% 40% 69% 68% 57% 70% 68% 69% 66%

Q0.75 68% 36% 71% 69% 49% 75% 69% 63% 74% 69% 72% 70%

Q0.95 73% 48% 98% 71% 59% 99% 71% 67% 90% 71% 76% 75%

Maximum 77% 59% 100% 73% 68% 100% 73% 71% 100% 73% 81% 81%

How often is the real value inside the 1-σ error bar?

Fast Medium Slow1 Slow2
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Correlation matrix 

Again, we use a correlation tables to detect further dependencies. We omit all background-

related parameters and to avoid background-dominated correlations restrain the correlation 

table to det-decomposition method. In appendix B.2 can be found the resulting input-output 

and output-cross-correlation. Table 4.10 displays a reduced variant of the input-output 

correlation table. 

Table 4.10: Step 2 correlation table displaying Kendall’s 𝜏 between input values and selected output 

values. Values < 0.1 are considered as not significantly correlated and were deleted to 

improve clarity. Notation equals table 4.5; measurement length 𝐿 =  ∆𝑡 ∗ 𝑁  

Blue cells: positive correlation: increased input values lead to increased output values  

Red cells: anti-correlation: increased input values lead to decreased output values 

 

Table 4.10 and the tables in appendix B.2 allow the following statements about parameter 

dependencies: 

 There is no significant inaccuracy caused by any input parameter 

 The decomposition-caused error  𝜎dec increases with the number components 𝐾in. 

Therefore, the precision decreases with increasing 𝐾in. 

 The decomposition-caused error  𝜎dec decreases with the component intensity but the 

relative error of other components increases 

 The overestimation of one component intensity 𝑛𝑘 due statistical uncertainty, leads likely 

to an underestimation of the intensity values of the neighbouring components, and vice 

versa. (see correlation between  𝜎dec in appendix B.2) 

 Increasing measurement lengths decreases the method-caused relative error for the slow1 

and slow2 component. Their precision is increased.  

 The error estimation accuracy of the fast component shows some dependencies to the 

component intensities and the detection settings. The cause is not clear.  

  

K in Fast Medium Slow1 Slow2 N Δt L

Fast 0.30 -0.68 0.32 0.12 0.18

Medium 0.35 0.20 -0.65 0.24 0.21

Slow1 0.18 0.16 -0.43 0.29 -0.37 -0.31 -0.47

Slow2 0.28 0.34 -0.28 -0.46 -0.39 -0.60

Fast 0.18 -0.33 0.16 0.26 0.13 -0.23

Medium -0.12 0.16 -0.13

Slow1

Slow2

Decomposition 

uncertainty

σd

Error 

over-/under- 

estimation

Component intensity n in Detection settings
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 Signal background dependence 4.3

The results in chapter 4.2 showed sufficient accuracy, precision and robustness of all tested 

decomposition methods. Especially the determinant-based method introduced in chapter 3.2 

revealed no significant problems. But how are the results affected if the OSL measurements 

contain an offset in their values due an uncorrected signal background? 

Background signals can be induced for example by the dark current of the detector, stimulation 

light leakages or steady photoluminescence emissions of the sample. To test the influence on the 

component intensity results, we add Poisson-distributed background signals to the CW-OSL 

simulations discussed in the previous chapter. 

Table 4.11:  Background-dependent accuracy in the decomposition of simulated OSL curves in 

dependence of offset level and the decomposition method. Blue cells: Signal component 

intensity nk underestimation; Red cells: nk overestimation 

 

As table 4.11 demonstrates, is the influence of a signal background on the fast component signal 

value insignificant, especially if the nls or det+nls are used as decomposition methods. The 

slow1 and slow2 component intensities, on the other hand, are shifted towards smaller (Slow1) 

or higher (Slow2) values.  

This background dependency of the slow decaying components underlines the importance of a 

sufficient background correction prior the data analysis. But the needed background 

measurements or instrumental properties may not be available for a given data set. Then the 

offset value has to be determined as part of the signal processing in step 1 or step 2. 

 

Method det nls det+nls det nls det+nls det nls det+nls det nls det+nls

Q0.05 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00

Median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Q0.95 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.00

Q0.05 0.54 0.98 0.98 0.65 0.94 0.94 -0.32 0.71 0.71 1.01 1.01 1.01

Median 1.00 1.00 1.00 1.01 1.00 1.00 0.93 0.94 0.94 1.07 1.06 1.06

Q0.95 1.21 1.01 1.01 2.81 1.11 1.11 0.99 0.99 0.99 1.49 1.25 1.25

Q0.05 -0.25 0.96 0.96 0.26 0.89 0.89 -1.93 0.43 0.43 1.03 1.03 1.03

Median 1.00 1.00 1.00 1.01 1.01 1.01 0.88 0.89 0.89 1.14 1.12 1.12

Q0.95 1.37 1.03 1.03 4.21 1.23 1.23 0.98 0.98 0.98 1.91 1.50 1.50

Background = 0 cts / s

Background = 20 cts / s

Background = 40 cts / s

Ratio R n between real and decomposed signal amplidute n

Fast Medium Slow1 Slow2
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The straight-forward approach is to include the offset as fitting parameter in step 1. This 

approach was tested for the data sets used in chapter 5.2 but resulted in some caes in offset 

values which were larger than expected from the deployed PMT detectors. Subtracting these too-

large offsets from the single OSL curves resulted in some weak-signal cases in curves which 

progress into negative values. Accordingly, this approach was rejected. The alternative approach 

is to determine the offset value as part of the step 2 single CW-OSL curve decomposition. In case 

of the nls algorithm, we have just to add an additional fitting parameter ‘offset’ to the 

regression model. In case of the det and the det+nls algorithm, we have to extend the 

decomposition approach for another component ‘offset’. This additional component with an 

intensity 𝑛offset is incorporated the same way as the decaying components are. We define one 

additional signal bin 𝑏𝐾+1 = 𝑏offset, build one additional linear equation, build also one additional 

matrix  𝐾+1  =   offset and extend the matrices for solving the equation system by one 

dimension. Only the definition of the probabilities 𝑃𝑗 offset differs: 

𝑃𝑗 offset = 𝑡𝑗 − 𝑡𝑗−1            𝑗 = 1,… , 𝐾  1 (4.5) 

Here, 𝑡𝑗 is the upper boundary of the signal bin interval with the index 𝑗 and 𝑡𝑗−1 is its lower 

boundary. We expect a lower precision when applying the additional offset component because 

as the correlation table in chapter 4.2 revealed, increases the method-caused error with an 

increase in the number of components. 

For comparison, table 4.12 summarizes the reliability of the det+nls method with and 

without a background signal: 

Table 4.12:  Background-dependent reliability in the decomposition of simulated CW-OSL curves. 

Chosen algorithm: det+nls without offset determination. For the encodings, see the 

table descriptions in chapter 4.2. 

 

 

 

Find offset?

FALSE Fast Medium Slow1 Slow2 Fast Medium Slow1 Slow2 Fast Medium Slow1 Slow2

Q0.05 1.00 0.99 0.99 1.00 0.00 0.01 0.02 0.00 51% 53% 53% 52%

Median 1.00 1.00 1.00 1.00 0.02 0.06 0.08 0.01 65% 69% 70% 66%

Q0.95 1.00 1.01 1.01 1.00 0.11 0.33 0.67 0.22 98% 99% 90% 75%

Q0.05 0.96 0.89 0.43 1.03 0.00 0.01 0.02 0.00 51% 39% 0% 0%

Median 1.00 1.01 0.89 1.12 0.02 0.06 0.08 0.01 65% 64% 31% 0%

Q0.95 1.03 1.23 0.98 1.50 0.18 0.89 1.49 0.97 99% 99% 75% 66%

  Accuracy R n Method error σdec

Background = 0 cts / s

Background = 40 cts / s

n in inside n out ± σout ?
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We reconstruct the same table from the same subsets of OSL curves. But this time, we 

incorporate the additional offset-component in the decomposition process: 

Table 4.13:  Background-dependent reliability in the decomposition of simulated CW-OSL curves. 

Chosen algorithm: det+nls with offset determination. For the encodings, see the table 

descriptions in chapter 4.2. 

 

The accuracy in determining the component intensity and its uncertainty is improved 

significantly for all OSL curves which contain background signals. The decomposition accuracy 

for the slow1 and slow2 component in none-background OSL curves is slightly decreased 

however. At the same time is the error estimation accuracy improved, which indicates smaller 

value shifting in the nls-refining process.  

But the apparent problem is the massive decreased precision for the slow1 and slow2 

component intensities for significant subset of OSL curves whether they include a signal 

background or not. In at least 5% of the simulated OSL curve scenarios, the scattering of the 

slow1 and slow2 component intensity values is at least one order of magnitude larger than the 

true component intensity values itself.  This means, the slow1 and slow2 component outcomes 

for such scenarios are not usable at all. A closer examination of the affected OSL scenarios 

implies that this issue occurs when the measurement length is short and the slow2 component is 

bright. In that case the decomposition algorithms (det and nls are affected about equally) are 

not able to resolve between a large offset value and a large Slow2 intensity. For example, the 

algorithm might overestimate the offset and underestimate the Slow2 intensity. The 

underestimated Slow2 intensity leads to a negative residual in the earlier parts of the OSL curve, 

which then is compensated by an overestimated Slow1 intensity. Although the result might be far 

off the true values, the algorithms might nonetheless hit a local or even global minimum of the 

residual square sum.  

We can conclude that the offset-including-decomposition is not suited for all kinds of OSL decay 

curve shapes and that we have to check the compatibility prior the decomposition. This 

counteracts our easy-to-use requirement on the method unless we find an improved algorithm 

to determine the offset. 

Find offset?

TRUE Fast Medium Slow1 Slow2 Fast Medium Slow1 Slow2 Fast Medium Slow1 Slow2

Q0.05 1.00 0.99 0.92 0.90 0.00 0.01 0.03 0.00 48% 52% 53% 53%

Median 1.00 1.00 1.00 1.00 0.02 0.08 0.16 0.08 63% 68% 71% 70%

Q0.95 1.00 1.01 1.07 1.08 0.12 0.67 8.5 13.5 75% 78% 78% 78%

Q0.05 1.00 0.99 0.91 0.95 0.00 0.01 0.03 0.00 49% 53% 55% 57%

Median 1.00 1.00 1.00 1.00 0.02 0.08 0.16 0.09 63% 69% 71% 71%

Q0.95 1.00 1.01 1.05 1.09 0.12 0.67 8.5 13.2 75% 78% 79% 78%

Background = 40 cts / s

  Accuracy R n Method error σdec n in inside n out ± σout ?

Background = 0 cts / s
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5 Application: 
Automated sample analysis 

One goal of this thesis is to provide an automated analysis of OSL dating data sets. To fulfil this 

goal, the Rmarkdown script EvaluateDataSet.Rmd was programmed. The script processes 

BIN files measured with either Risø OSL/TL readers [100] or Freiberg Instruments lexsyg 

systems [82], [101]. The measurement sequences in each data set entry (one entry = one 

aliquot) has to be structured according to the SAR protocol (see table 3.1 in chapter 3.3). The 

user can define laboratory and environmental dose rates to get back paleodose and age results, 

otherwise the results are returned in time units of artificial irradiation. The user can also select 

data set entries as background measurements. Then the average OSL curve of these 

measurements will be subtracted from all other OSL curves. The user can also change the 

method parameters, like the F-threshold value or the selected decomposition algorithm. But all 

these settings are optional; the script will run successfully by using the default settings and just 

selecting a BIN file for analysis. Depending on the data set and the used PC, the computation will 

need a few minutes and return the data analysis report as Microsoft Word document. The 

document is about 20 pages long, an example can be found in the appendix C. Currently, an R 

environment is needed to execute the script. For the future, an interactive online version of the 

analysis, including a PDF export function, is planned. Some preliminary tests to do so were 

performed and showed the feasibility of this idea.  

To test the script and also to test the reliability of the Step 1, Step 2 and Step 3 algorithms on 

actual data sets, several dating-relevant data sets were re-evaluated: 

 Six standard SAR data sets from six samples of different origin were analysed: Batagai, 

BK8, BT594, BT1214, BT1240 and Oy7. BT1240 was discarded afterwards because Step 3 

of the analysis failed due a SAR-incompatible measurement sequence. The analysis results 

of the other five are summarized and discussed in the following. 

 Two single-grain laser-stimulated OSL [102] data sets were analysed: C-SAL1 and SUV3. In 

both cases Step 1 found three components. Step 2 decomposed successfully all OSL records 

although the OSL curves in SUV3 have very low SNR values and the SUV3 as well as C-SAL1 

contain many data set entries without OSL signals and just noise. Yet, no paleodoses could 

be calculated. Luminescence::plot_GrowthCurve() produced diverging 𝐷e values 

and 𝐷e error values for some data set entries. The rejection criteria did not reject all of 

these erroneous dose values. Instead they caused diverging CAM and MAM results. We can 

conclude: The Step 3 approach has to be adapted for this kind of data set, which will not be 

part of this thesis. 
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 To test a new SAR-like protocol, four experimental data sets of two samples were analysed: 

FB and BT1713. Two data sets were measured under not-SAR-conditions. All computing 

were successful and produced reasonable outcomes. The experimental protocol itself, 

worked for sample FB but not for sample BT1713.  The protocol and the experimental 

results are discussed in chapter 5.3. 

All data sets, their automatically created reports and the corresponding Rmarkdown files can be 

found on the CD provided with this thesis. 

 Example analysis  5.1

We chose sample BT594 as example to have a closer look at the workflow and the analysis 

results of the Rmarkdown script. We chose BT594 for the following reasons: 

 The same sample was used as example in my bachelor thesis [36]. This thesis already 

proposed to use an equation system and Cramer’s rule to decompose OSL measurements. 

Although the bachelor thesis evaluated just on aliquot (the first one) of the data set, the 

findings there can be compared with the findings here 

 The OSL signals of the sample are rather dim compared to other published OSL 

measurements. The OSL records show also significant Medium component intensities. The 

sample had been successfully dated before but the age results are suspected to be 

underestimated. We conclude that the sample is well suited to test the precision and 

reliability of the method. 

Sample origin 

Sample BT594 is a coarse grain quartz from Seilitz near Meißen in Saxony. It is part of a larger 

stratigraphic sequence, evaluating the accumulation of loess soils during the last glacial era. 

Meszner et al. [103] dated this sample to an age of 22.2 ± 3.5 ka. Sediment layers above the 

sample layer were dated to about 25 - 27 ka. The sediment layer below BT594 was dated to 

about 31 ka. Corresponding samples from another sample site were also dated to about ~ 26 ka. 

Although the published age of BT594 as well as the ages of related samples is given with 

significant error bars, one can argue that the estimated age of BT594 should also be between 25 

and 30 ka.  It might be that the layers above BT594 were not fully bleached or contaminated with 

unbleached sediments at the burial event [103]. Or the effect described in Li and Li [50] and 

Steffen et al. [51] took place: A thermally unstable and/or recuperating Medium component 

caused age underestimation. 

  



 

54 
 

Step 1 results 

First, we calculate the global average OSL curve from all 24 aliquots. For each aliquot 14 OSL 

curves were measured, leading to 336 OSL curves overall.  

 
Figure 5.1:  Average OSL curve of BT594; Blue: Average OSL curve. Grey: Data points of all 336 OSL 

records of sample BT594. Left: linear axes; Right: double-logarithmic axes. 

 

In Step 1, the average OSL curve is fitted with an increasing number of components K. The 

algorithm generates the following F-test table: 

Table 5.1:   F-table: Decay constants 𝜆  and fit quality parameters as a function of number 

components K. Red square: Fitting selected as true because     0 

𝑲 λ1 (s-1)   𝝀𝟐 (s−𝟏) 𝝀𝟑 (s−𝟏)   𝝀𝟒 (s−𝟏) 𝝀𝟓 (s−𝟏)  𝝌𝟐 (   ) 𝑭𝑲 

1 1.76     3.99e+05  

2 2.54 0.0333    4.84e+03 3.91e+03 

3 3.17 0.796 0.0164   216 1.01e+03 

4 4.34 2.03 0.353 0.00885  27.1 320 

5 5.66 2.65 1.08 0.249 0.00576 24 5.79 

 

Comparing the 5-component fit with the 4-component fit gives us an F-value of 5.79 which is 

below our pre-set threshold value of  
th 
=  0. This implies that the 𝐾 =   fitting does not 

significantly improve the fit quality.    

We assume a stimulation wavelength of 470 nm with an intensity of 50 mW cm-2 and calculate 

expected decay constants from literature photo-ionisation cross-sections [30], [47], [48]. This is 

done by plot_PhotoCrosssections(), which returns figure 5.2. The function renames the 

components to the common quartz OSL component names, if their decay constant lies within the 

averaged 2-σ-interval of the literature values. 
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Figure 5.2:  BT594: Comparison of obtained decay constants with literature values, see [30], [47], 

[48]. Red square: Fitting model selected by F-test. 

 

The F-test declares four components as correct number of components but looking at the fitting 

diagrams and the decay constant comparison shows that the 3-component fit is already 

adequate (< 3 % deviation at any point) and matches the literature values better. Because of this 

discrepancy, we will not only evaluate the 𝐾 = 4 case but also all 𝐾  4 cases. 

 

 
Figure 5.3:  Average OSL curve of BT594 fitted with K = 3 components 
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Figure 5.4:  Average OSL curve of BT594 fitted with K = 4 components 

 

Step 3 results 

The function decompose_SARdata() builds L/T tables for all components in all K = 1, … , 4 

cases.  It also creates L/T tables for late light background subtracted (=late b.) luminescence 

values, which are the default SAR approach. In addition, L/T tables for early light background 

subtracted (=early b.) luminescence values are generated for comparison (see chapter 2.3). For 

the component-separated L/T tables, a few fittings failed because of an incoherent growth of L/T 

values with increasing dose.  

The equivalent doses De calculated from the growth curves have similarly distributed values for 

both background subtraction cases as well as for the fast components in all separation cases. The 

Medium components in the 𝐾 = 3 and the 𝐾 = 4 case show lower De values than the expected 

natural dose. Figure 5.5 displays this separation of De values with increasing number of 

components K. 
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Figure 5.5:  BT594: Box plots of the De-distributions from 24 aliquots from different signal calculation 

approaches. The dashed line shows the expected dose   

Box plot rules: The whiskers enclose all four quartiles besides outlier. The rectangles 

enclose the second and third quartile. The middle line shows the median.  

 

As next step, the rejection criteria are applied to all De subsets. This way, we sort out dose values 

with uncertain physical plausibility. 

 

Table 5.2:   BT594: Number of 𝐷e values which passed rejection criteria successfully for various 

signal calculation approaches 

component late b. early b. K = 1 K = 2 K = 3 K = 4 

1 13 of 24 14 of 24 2 of 24 11 of 24 9 of 22 1 of 20 

2    1 of 24 3 of 23 4 of 20 

3     1 of 22 1 of 23 

4      9 of 20 

 

Of the successfully calculated De values, about half passed the rejection criteria in both 

background subtraction cases as well as component 1 in the 𝐾 = 2 and the 𝐾 = 3 case. All other 

components did not pass the rejection criteria for most of their De values. The only exception is 

the background-dominated component 4 of the K = 4 case. A closer look to the result data reveals 

that the majority of all rejections are caused by insufficient recycling ratios. In contrast, the 

recuperation for most of the De values remained low. Only component 2 in the 𝐾 = 2 case and 

component 4 in the 𝐾 = 4 case show increased average recuperation values (see table 6 in 

appendix C).  

Applying the test criteria should reject the majority of inaccurate De measurements. Figure 5.6 

shows the distribution of the remaining De values. 
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Figure 5.6:  Box plots of the De-distributions from those aliquots which passed the rejection criteria 

 

We apply the central age model and the minimum age model to all remaining equivalent doses. 

Then we convert the returned paleodoses into age value by applying the environmental dose 

rate of 2.92 Gy ka-1 given by Meszner et al. [103]. 

 

Table 5.3:  BT594 analysis results, automatically calculated by EvaluateDataSet.Rmd. 

Components are named after literature values if their decay constant lies within 2-𝜎-

range of the average literature value. For the minimum age model, the overdispersion 

argument was set to 𝜎 = 0 2. 

Method 
Component 

name 
Decay 

constant [s-1] 
Mean 

intensity 
Passed 

aliquots 
Central age 
model [ka] 

Over- 

dispersion 

Minimum age 
model [ka] 

late b.    13 of 24 20 ± 1.7 30% 15.7 ± 2.7 

early b.    14 of 24 24.1 ± 1.5 17% 24 ± 2.6 

K = 1 Component 1 1.76 3.6e+03 2 of 24 30.6 ± 6.6 0% 30.5 ± 11.2 

K = 2 
Fast 2.54 2.6e+03 11 of 24 22.2 ± 1.4 17% 22.1 ± 2.5 

Slow2 0.033 1.4e+04 1 of 24   62 ± 21.3 

K = 3 

Fast 3.2 1.9e+03 9 of 22 28.9 ± 1.3 4% 26.8 ± 3.5 

Medium 0.8 1.1e+03 3 of 23 19.6 ± 3.3 0% 19.6 ± 6.5 

Slow2 0.016 2.3e+04 1 of 22   312.6 ± 138 

K = 4 

Component 1 4.3 7.8e+02 1 of 20    

Component 2 2 1.7e+03 4 of 20 32.1 ± 5.4 0% 31.3 ± 8.5 

Component 3 0.35 9.1e+02 1 of 23    

Component 4 0.0088 3.7e+04 9 of 20 72.7 ± 5.4 15% 73.2 ± 10.4 

 

The results in table 5.3 show significant differences between the signal calculation approaches. 

The sample age calculated by the late light background subtraction method is 20 ± 1.7 ka for the 

CAM model and clearly underestimates the true sample age of between 25 and 30 ka. The 
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difference to the age value of 22.2 ± 3.5 ka given in literature arises probably from differences in 

the signal integration intervals and/or rejection thresholds which are not given provided by 

Meszner et al. [103]. The overdispersion of the CAM age indicates that the distribution of De 

values is larger than expected from statistical errors. An unstable medium component with low 

natural dose might be the reason for age underestimation and overdispersion. This theory is 

underpinned by the older age and lower overdispersion returned by the early light background 

method. Of the decomposition analyses, the 𝐾 = 3 case returned the most reasonable results in 

terms of expected decay constants, rejection test values and expected sample age. This indicates 

that Step 1 of our method overestimates the actual OSL component number, at least with the 

chosen threshold value of F. The age results as well as the raw De results (see figure 5.5) of the 

𝐾 = 3 case validate the theory of low natural dose values of the medium component. The CAM 

age as well as the MAM age determined from the fast component of the 𝐾 = 3 case lies within 

the expected age range and shows just small overdispersion. Thus we can conclude that these 

age values are more accurate than the default-SAR determined age values. Whether the MAM age 

or the CAM age is more accurate does not arise from the decomposition results but is also not in 

the scope of this thesis. 
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 Re-evaluation of some standard SAR data sets 5.2

Besides BT594, four other samples measured with the standard SAR protocol were also 

analysed. All samples were measured with Risø TL/OSL readers [97] with 470 nm LED 

stimulation and an estimated stimulation intensity of about 35 mW cm-2. The data set of sample 

BT1214 was provided by C. Schmidt (Lehrstuhl Geomorphologie, Universita t Bayreuth). The data 

sets of sample Oy7, Batagai and BK8 were provided by M. C. Fuchs (Helmholtz-Institut fu r 

Ressourcentechnologie, Freiberg). 

BT1214: This sample is a fine grain (~4–11 µm) quartz originating from an archaeological site 

at the Topliţa river in northern Romania.  The sample is regarded as well suited for luminescence 

dating with bright average initial signals of about 106 counts s-1, dominant fast component and 

homogeneous luminescence properties across all aliquots due to averaging effects of in the order 

of 106 grains per aliquot. C. Schmidt evaluated an age of 53 ± 7 ka which is considered as 

reasonable [unpublished]. 

BK8: Sample BK-8_1295-1280 is a 40–63 µm grain diameter quartz extraction from a drill-core 

taken at Buor-Khaya at the Siberian north coast [101]. M. C. Fuchs evaluated an age of 27 ± 3 ka 

which is considered as under-estimated. For the feldspar fraction, an IRSL age of about 45 ka was 

found. For the organic material, a radiocarbon date of about 51 ka was found [101]. The OSL 

measurements feature average initial signals of about 105 counts s-1, a bright medium 

component and inhomogeneous luminescence properties due large inter-aliquot scatter. Because 

the chosen test dose was small, a high uncertainty in the Ti signals is induced.  

Oy7: Sample Oy7-01-14 is a 63–100 µm grain diameter quartz extract from an ice wedge taken 

at Oyagos-Yar, also at the Siberian north coast [102]. The feldspar extract was dated to about 120 

ka. Dating attempts of the quartz sample were rejected so far because they were considered as 

under-estimated. The luminescence properties are similar to BK8 but with a less bright Medium 

component. 

Batagai: Sample Batagai_2-7_B-2-47 is a 63–100 µm grain diameter quartz extract from a 

stratigraphic sequence opened by a mega-slump near the town Batagai in interior Sibiria [103]. 

The Batagai mega-slump is an on-going more than 1.2 km wide and 150 m deep ground-

collapsing event due to permafrost melting caused by deforestation and global warming. The 

feldspar extract was dated to about 210 ka. 

 
Figure 5.7:  Batagai mega-slump: (a) view from aircraft in 2011, (b) view from southern edge in 2014. 

Photos taken from Ashastina et al. [103] 
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All samples were analysed with the Rmarkdown script EvaluateDataSet.Rmd. Report 

summaries can be found in appendix C. The full reports as well as the data files and the 

particular script files can be found on the accompanying CD.  

Results 

Table 5.4 summarizes some measurement characteristics and the outcome of the F-test. The 

measurement duration of sample BK8, Oy7 and Batagai were reduced to 40 s to avoid over-

fitting. For all samples, besides BT1214, four components were found. The large F-values in the 

model comparisons for BT1214 are related to the excellent SNR of this sample. A good SNR leads 

to a small noise-contribution to χ². The fitting of even very weak signal components lead then to 

a significantly decreased χ² which results in large F-values. 

Table 5.4: Summary of F-tests to find correct number of components K for five dating data sets.  

Red cells: Clearly improved fit quality by the additional component.  

Green cells: No improvement in the fit quality, thus the previous model is sufficient. 

 

 

To account for possible over-fitting, all component number cases 𝐾 =  1,… , 𝐾se ect were 

analysed. The age determinations for the two fastest decaying components of the 𝐾 = 3 and 

𝐾 = 4 case are shown in table 5.5. 

Table 5.5: Component-resolved age determination results for 3-component and 4-component model 

 

 

For all five data sets, the fast component of the 𝐾 = 3 case returned the most reasonable age 

results, while the medium component of the 𝐾 = 3 case underestimated the sample ages. The 

inconsistent age results for the 𝐾 = 4 case need further investigation, which shall not be 

→ K =2 → K =3 → K =4 → K =5

BT594 24 0.2 20 3910 1010 320 6 4

BT1214 30 0.1 40 2080 10400 8080 158 5

BK8 20 0.2 40* 5390 5240 502 6 4

Oy7 20 0.2 40* 46400 1110 1000 28 4

Batagai 20 0.4 40* 5020 1900 251 17 4

sample aliquots
channel 

width (s)

K selected 

@ F threshold = 50

F value (fit improvement)meas.

length (s)

N De CAM (ka) N De CAM (ka) N De CAM (ka) N De CAM (ka) N De CAM (ka)

BT594 ~ 25 13 20 ± 2 9 29 ± 1 3 20 ± 3 1 - 4 32 ± 5

BT1214 ~ 50 29 51 ± 1 24 51 ± 1 26 39 ± 1 8 46 ± 3 22 49 ± 1

BK8 ~ 50 16 31 ± 2 10 31 ± 2 7 26 ± 2 4 27 ± 7 8 65 ± 16

Oy7 ~ 120 15 97 ± 10 8 128 ± 21 4 59 ± 20 6 99 ± 29 4 107 ± 22

Batagai ~ 200 14 155 ± 25 8 157 ± 31 6 62 ± 15 4 317 ± 96 2 57 ± 27

sample

K  = 3 decomposition K  = 4 decomposition

expected 

age (ka)

Component 1 Component 2late background Fast Medium



 

62 
 

discussed here. We assume the 𝐾 = 3 case as physically true.  

For three samples (BT594, BT1214, Oy7) the fast component returned the assumed correct age. 

For two samples (BT594 and Oy7) the fast component ages are of higher accuracy than the ages 

calculated based on the late background subtraction approach. Nevertheless, for two samples 

(BK8 and Batagai) OSL decomposition could not solve the problem of underestimated ages. 

Sample BK8 showed evidence of high pressure events caused by several kilometre thick glaciers 

above the sample. Experiments showed that pressures of about 2 MPa are sufficient to fully 

discharge the traps accounted for the fast component [104][Fuchs, pers. comm.]. It is likely that 

the fast component of BK8 was partly or fully erased by this effect during the maximum of glacial 

impact. 

The underestimated age of the sample Batagai is probably due to the maximum age limit of 

quartz OSL dating. For the rejected De values, a closer look at the data reveals saturated dose-

signal curves with saturation levels below the actual natural doses. It is likely that the age 

underestimation arises from ‘overcharged’ signal-dose curves of the accepted De values. 

Overcharged means here, that the artificial high-dose signal points exceed the natural signal 

values related to the irradiation-charging/thermally-discharging equilibrium under 

environmental conditions. 

But why did the algorithm of Step 1 find four respectively five components although three 

components are sufficient for all tested samples? The F-values in table 5.4 indicate large 

improvements in the fit qualities by an additional fourth component. Thus, we can consider the 

4-component model as mathematically true. In contrast, the results in table 5.5 indicate that the 

3-component model is physically true. Multiple hypotheses for this discrepancy are at hand:  

1) Not all components might decay obeying first order kinetics. One or more components 

can be affected by retrapping or other types of charge carrier transfers. This would 

change the curve shape of this component, in case of retrapping towards a stretched 

exponential shape.  

2) Decay constants might not be constant over the whole measurement sequence. For 

example, bleaching and heating can alter the transmittance of sample grains and with it 

the effective photon-flux at the OSL-contributing traps.  

3) Inhomogeneities in the sample or the sample preparation between aliquots in 

combination with an inhomogeneous stimulation intensity can cause varying decay 

constants. This uncertainty in the decay constants might favour over-fitting 

Further investigations are necessary to prove or dismiss these hypotheses, which shall not be 

part of this thesis. However, the mathematical overestimation of the number of components as 

well as the SNR-dependent and sometimes erratic F-values (see 𝐾 = 1 to 𝐾 = 2 in BT1214) in 

table 5.4 demonstrate the need for re-evaluating the statistical test to find the true number of 

components. 
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 Omit thermal treatment in measurement protocol 5.3

In 2006, Ankerjaard et al. [108] and more recently Roberts et al. [109] proposed quartz OSL 

dating without thermal treatment during the measurement sequence. This would simplify 

instrumental demands and could enable accurate in-field dating. It could also prevent effects 

arising from thermally transferred charge carriers. At room temperature, however, contributes a 

thermally unstable shallow trap to the CW-OSL signal. This additional OSL component has a high 

intensity and is related to the 110°C thermoluminescence peak. Ankerjaard et al. [108] 

concluded that OSL signal decomposition is necessary to calculate reasonable doses. In addition, 

Roberts et al. [109] point out that these shallow traps compete with luminescing recombination 

centres about the charge carriers deployed from the thermally stable traps. Thus, they propose 

to apply a pre-dose of 10 Gy before the natural OSL signal is measured to fill the shallow traps. 

The results for the few aliquots they tested were promising. But they described their CW-OSL 

curve fitting procedure as ‘cumbersome’ and not practical. They also pointed out the uncertain 

correlation between room temperature signal components and 125°C OSL signal components.  

The method presented in this thesis might provide the fast and reliable data analysis method 

needed to further investigate and develop the approach of Roberts et al. [109]. To test that, a 

series of measurements were performed at a Freiberg Instruments lexsyg research system [101] 

in the luminescence lab of the institute of geography at the university Bayreuth. The samples 

were prepared and the measurements supervised by C. Schmidt. 

Experimental details 

Two samples were selected: The coarse grain quartz ‘Les sables de Fontainebleau’, or short ‘FB’, 

is a well characterized reference quartz with high purity and very bright OSL signals [110]. The 

fine grain sample BT1713 has rather dim OSL signals and was chosen to test a more ordinary 

sample. 20 aliquots for each sample were prepared. Also one empty aliquot was prepared to 

perform background measurements. All 41 aliquots were first bleached for 30 min with the 

Freiberg Instruments solar simulator [101]. A blue/green wide band width spectrum of about ~ 

200 mW/cm² intensity was chosen to erase any natural OSL signal. Then the samples were 

heated to 250°C to deplete light-insensitive traps. After the heating, all aliquots were irradiated 

for 200 s with a β-irradiation ring source [111] which lead to an accumulated dose of 10.5 Gy for 

FB and 11.3 Gy for BT1713. The dose difference arises from the different sample gain sizes. All 

irradiations were performed at 125°C to keep shallow traps depleted and simulate 

environmental defect state conditions.  

10 aliquots of each sample were measured with the usual measurement sequence of the SAR 

protocol [19] but with 525 nm stimulation instead of the usual 470 nm stimulation and longer 

stimulation time to account for the lower decay constants, see table 5.6. The wavelength change 

is not intended but originates from the available stimulation wavelengths. 
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Table 5.6: Measurement sequence based on SAR protocol from Murray and Wintle [19] but with 

525 nm stimulation. The regeneration doses are: 𝐷𝑖 = 0, 100, 200, 400, 600, 0, 100 s. 

Step Treatment Details Comment 

1 Reg. Dose Give dose Di  
Irradiate at room temperature 

Di = 0 Gy at first cycle (natural dose) 

2 Preheat Heat at 5 °C /s to 250°C, hold 10 s Cool to 60°C before proceeding 

3 OSL 525 nm stimulation at 125°C with LEDs for 100 s at 80 mW/cm² 

4 Test dose Give dose DT DT = 100 s 

5 Preheat Heat at 5 °C /s to 250°C, hold 10 s  

6 OSL  525 nm stimulation at 125°C with LEDs for 100 s at 80 mW/cm² 

  Return to step 1  

 

The other 10 aliquots of each sample were measured with the sequence proposed by Roberts et 

al. [109], see table 5.7. The device time needed to process the sequences was just about 2/3 of 

the time needed for the standard SAR sequence.  

Table 5.7: Measurement sequence based on protocol from Roberts et al. [109] but with 525 nm 

stimulation. The regeneration doses are: 𝐷𝑖 = 200, 100, 200, 400, 600, 0, 100 s. 

Step Treatment Details Comment 

1 Reg. Dose Give dose Di Di = 200 s at first cycle (pre-dose) 

2 OSL 525 nm stimulation for 100 s at room temperature 

3 Test dose Give dose DT DT = 100 s 

4 OSL 525 nm stimulation for 100 s at room temperature 

  Return to step 1  

 

The four measured data sets were successful analysed with EvaluateDataSet.Rmd. The 

analysis summaries can be found in appendix D. The full reports as well as the data sets and the 

sequence files can be found at the accompanying CD. 
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Results 

 

Figure 5.8:  Average CW-OSL curve of sample FB measured with the SAR protocol from Murray and 

Wintle [19]; Upper-left: logarithmic y-scale, linear x-scale; Lower-left: Residual curve with 

drawn-in signal bin intervals 

 

  

Figure 5.9:  Average CW-OSL curve of sample FB measured with the protocol from Roberts et al. 

[109]; Upper-left: logarithmic y-scale, linear x-scale; Lower-left: Residual curve with 

drawn-in signal bin intervals 

 

In case of sample FB, the fitting of the global average OSL curve found three components for the 

standard SAR protocol measurement (figure 5.8). Component 1 is likely identical with the fast 

component in 470 nm CW-OSL measurements. The dose calculation for component 1 returned 

an underestimated dose value, see table 5.8. That is not unusual for dose recovery experiments 
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with quartz and can be further investigated by pre-heat plateau tests. Global curve fitting at the 

Roberts et al. protocol measurements revealed five components (figure 5.9).  A closer look at the 

data implies that the fast component in the 125°C CW-OSL curves is related to component 3 in 

the Roberts et al. protocol. The dose calculation for component 3 returned an accurate dose, see 

table 5.8. Therefore, the protocol seems to return accurate dose estimations, at least for this 

particular sample and this particular dose recovery test. 

Table 5.8: Recovery dose determination results for sample FB. SAR: Fast component parameters and 

dose values measured at 125°C and 525 nm stimulation with the Murray and Wintle [19] 

protocol. Roberts et al.: Component 3 parameters and dose values measured at ~25°C and 

525 nm stimulation with the Roberts et al. [109]  protocol.  

 

In case of sample BT1713, the global curve fittings found very similar OSL characteristics. The 

CW-OSL signals are nearly two orders of magnitude weaker and the signal decays are slightly 

faster than of sample FB, but the curve shapes are very similar. This applies for both, the 

standard SAR protocol measurements as well as the Roberts et al. protocol measurements. The 

dose calculation returned an accurate dose estimation for the standard SAR protocol, but a 

heavily dose overestimation for the Roberts et al. protocol, see table 5.9. Note that this 

overestimation is represented by just one De value in table 5.9, because that calculation was the 

only one to pass the rejection criteria. A closer look at the data reveals that all De values 

overestimate the true dose more or less. 

Table 5.9: Recovery dose determination results for sample BT1713. SAR: Fast component 

parameters and dose values measured at 125°C and 525 nm stimulation with the Murray 

and Wintle [19] protocol. Roberts et al.: Component 3 parameters and dose values 

measured at ~25°C and 525 nm stimulation with the Roberts et al. [109]  protocol. 

 

Further investigations are necessary to explain this outcome. When looking at the full analysis 

reports, one will find more details which need further discussion. But that shall not be the scope 

of this thesis. The added benefit of the applied method is the rapid data analysis. Roberts et al. 

[109] mentioned their struggle to calculate the wanted dose information. We demonstrated an 

automated and reliable way to do this. 

Protocol
decay 

constant [s-1]

Signal 

amplitude

Passed 

rejection crit.

expected 

dose [Gy]
CAM [Gy]

Over-

dispersion

SAR 0.79 1.20E+05 10 of 10 8.7 ± 0.1 1%

Roberts et al. 0.31 8.46E+04 7 of 10 10.2 ± 0.5 0%
10.5

Protocol
decay 

constant [s-1]

Signal 

amplitude

Passed 

rejection crit.

expected 

dose [Gy]
CAM [Gy]

Over-

dispersion

SAR 0.98 2.00E+03 6 of 10 12.3 ± 1.7 33%

Roberts et al. 0.35 2.80E+03 1 of 10 31.8 -
11.3
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6 Conclusion and Outlook 

This work introduced a new approach towards separating the signal components in CW-OSL 

measurements of quartz. The proposed method can be divided into three major steps: 

1) Identify CW-OSL components 

2) Decompose all CW-OSL measurements 

3) Determine retrospective dose information resolved by individual components 

Step 1 summary 

In the first step, an average CW-OSL curve from all records of a data set is calculated. The 

resulting global curve is fitted according to the approach suggested by Bluszcz & Adamiec [54]. 

The fitting model consists of a sum of exponential decays. The correct number of components is 

chosen based on a statistical F-test. The best-suiting threshold value for the F-test was 

determined in a simulation with about 10,000 global OSL curves, each simulated by an individual 

set of parameters. The same simulation data set was used to evaluate the accuracy and precision 

of the algorithm. While over-fitting and under-fitting can occur and is strongly correlated to the 

length of the measurement, in most cases the correct number of components was found. The 

most important component for dating applications is the ‘fast’ decaying component, which was 

found in 99.95% of all simulated cases. The determined decay constants lay in 97.4% of all cases 

inside a ±10% margin of the true decay constant. The accuracy and reliability in finding and 

parameterizing a component decreases for slower decaying components but remained sufficient 

for most of the simulated OSL curves. The simulations therefore demonstrated the feasibility of 

that approach in identifying CW-OSL signal components. In the application tests on standard 

SAR data sets, however, four components were identified in most cases. However, three 

component models lead to more reliable and reasonable results. Thus, for practical use in 

automated analysis scripts, the component identification process has to be improved. 

The following improvements are suggested for consideration in later works: 

 The use of a fitting model with a fixed number of three components should be considered. 

It is suggested to test the introduction of a stretching parameter at the exponent of the 

slowest decaying component. Roberts et al. [106] apply this model and it is also in 

accordance with at least some of the kinetic models of quartz [38], [40]. However, the 

implications for the decomposition algorithm are unclear and this model would also 

undermine the variability of the method presented in this thesis. 

 Instead of a global OSL curve, a subset could be used for component identification. This 
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might avoid uncertainties in the decay constants, which lead to over-fitting. For example, 

using just test-dose CW-OSL measurements would erase dose dependencies and would 

also allow the monitoring of shifts and deviations in the decay constants. 

 A less SNR-sensitive statistical test as substitute for the F-test should be considered. 

Bluszcz [pers. comm.] proposes the use of Student’s t-test or the sign test. 

Step 2 summary 

In the second step, each single CW-OSL measurement is decomposed analytically. First, multiple 

signal bins are defined. Their number is equal to the number of components found in the first 

step. These signal bins have a largely improved SNR, compared to single data points. From the 

signal bin values and the decay constants from the first step, an equation system is built. This 

equation system is solved by linear algebra methods. These linear algebra methods allow for the 

use of the propagation of uncertainty method to return statistical error estimates. The error 

estimation approach was also used to develop a numerical procedure to find the optimal signal 

bin intervals. However, the interval determination outcome is not fully reproducible. It is 

recommended to improve the procedure in future research. The decomposition approach and its 

regression-alternative were tested in a simulation with over 15,000 parameter sets and 15 

million OSL curves. The simulation demonstrates a sufficient accuracy, precision and error 

estimation for all OSL curves without a background offset. The precision could be further 

improved by an additional regression step. With the appearance of background signals, however, 

the accuracy in determining slowly decaying component intensities decreased. For most OSL 

curves, this problem could be solved with the introduction of an additional offset component. For 

some OSL curve scenarios though, this offset component destabilized the decomposition 

algorithm. In consequence, this approach was abandoned for the practical tests.  

No problems could be observed in the automated analysis of several data sets. Although not 

shown and discussed in this thesis, some tests with simulated and actual noise-dominated and 

zero-signal measurements were performed. The decomposition algorithm proved its reliability 

by always returning reasonable intensity values and error estimations. 

Step 3 summary 

For the third step, standard approaches [19], [92] provided by the R package 'Luminescence' 

[61] were used to recover dose information and estimate sample ages. These allowed the 

development of an automated analysis script. This script was tested successfully on five 

geomorphologic data sets. It was also applied successfully to investigate a new measurement 

protocol. However, the dose determination approach was neither specifically chosen nor 

optimized for analysing component-separated data sets. Therefore, there is a high potential for 

improving the SNR and accuracy of sample age calculations. The component-separated data sets 

may also contain valuable information about sample conditions like the completeness of the 

natural bleaching. 
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Conclusion 

At the end of chapter 2, we defined the following requirements: 

1) Identify the number of components and their decay constants on a sample-to-sample basis 

2) Allow component-resolved dose calculation, even for samples with low-SNR 

measurements 

3) Allow automated component and dose evaluation, without inherent need for user 

interaction 

4) Be applicable for a large variety of instrumental and measurement conditions 

This thesis proved that the introduced method for quartz CW-OSL component separation fulfils 

points 1 – 3. Nonetheless, further tests and improvements for step 1 and step 3 of the method 

are recommended. One way to investigate and test the method further is to apply it to the kinetic 

models of quartz introduced in chapter 2.3. The R package published by Friedrich et al. [42] can 

simulate CW-OSL measurement sequences based on particular models and defect settings. This 

allows relations between signal components and theoretical defect concentrations and charge 

carrier movements to be revealed. Comparing these relations with experimental findings might 

allow methodological improvements in the age determination and might also improve our 

understanding of optically stimulated luminescence of quartz. 

Point 4 in the list above was proven just partly in this thesis. We tested a variety of channel 

widths, measurement lengths and background offsets by simulations. It turned out that these 

parameters can compromise the accuracy of the method. The introduction of a test criterion 

should be considered. Tested with just one experiment was the methods feasibility for other 

stimulation and temperature conditions. Changes in these conditions can change the OSL 

characteristics significantly. While the method demonstrated its usefulness in decomposing the 

CW-OSL curves obtained with the no-thermal-treatment SAR protocol of Roberts et al. [106], it 

might lead to wrong conclusion if the underlying multi-exponential decay model is not suitable 

for certain conditions. Also not considered were detection modes other than photon-counting 

mode of a photomultiplier tube.  

Outlook 

The experimental results in chapter 5.3 demonstrated that the introduced method can enable 

new protocols with simplified instrumental settings or shorter measurement sequences. The 

individual characteristics of the signal components in a particular sample might give new 

insights into the origin and history of the sample. In addition, if the signal components can be 

related to specific levels of thermal stability, then thermochronometry of quartz might become 

feasible [108]. 
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The introduced method might also provide a new strategy of separating OSL components in 

spatially or spectrally resolved measurements. The cheapest and most common way to perform 

spatially or spectrally resolved OSL measurements is to deploy scientific CCD or CMOS cameras. 

Yet these cameras produce the most signal noise in the event of image read-out. Thus, long 

exposure times and low read-out frequencies are deployed to enable sufficient measurement 

SNRs. However, the lack of time resolution in such measurements prevents the use of traditional 

component fitting methods. Moreover, sensitive detectors with good time resolutions like EM-

CDD or ICCD cameras are costly and complex to use. The introduced method enables a new 

strategy to solve this issue: First, we gather the component number and the decay constants by 

applying step 1 on common PMT measurements. Then we use an adapted version of step 2 to 

decompose the camera measurements. The signal bin intervals in step 2 can be adjusted to the 

exposure intervals of the camera. Only three exposures are necessary to decompose an image or 

spectrum with three signal components. Thus, CW-OSL component separation would be enabled 

for measurement series like those performed by Greilich et al. [109], [110] or Lomax et al. [111]. 

Furthermore, we only considered CW-OSL measurements of quartz. Beyond that, the introduced 

method might also be helpful for OSL measurements of other materials. For example, in Al2O3:C 

dosimetry, a similar issue is known [112]. And the mathematical problem of decomposing multi-

exponential decay curve is also crucial in other scientific fields. Mentioned here shall be 

capacitor discharge curves and the multi-compartment model in pharmacological kinetics.  
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A R-package: OSLdecomposition  

A.1 Scripting sequence 

 

 

# load necessary packages 

library(OSLdecomposition) 

library(Luminescence) 

library(numOSL) 

library(knitr) 

library(ggplot2) 

library(gridExtra) 

library(ggpubr) 

 

# read BIN file. The prefix “Luminescence::” is not necessary and is 

displayed here just for documentation 

lum_data <- Luminescence::read_BIN2R(file.choose(),  

     fastForward = TRUE) 

 

# cut records if they are longer than 40 s 

lum_data <- prepare_OSLdata(lum_data,  

                            record.type = “OSL”, 

                            cut.time = 40) 

 

# calc arithmetic mean curve from all OSL curves 

global_curve <- sum_OSLcurves(lum_data, 

                              output.plot = TRUE) 

 

# find components via nonlinear regression and F-statistics and return a 

list with all fitting results. fit_OSLcurve() calls numOSL::decomp() to 

perform nonlinear regressions and calls calc_OSLintervals() to define 

signal bin intervals  

component_list <- fit_OSLcurve(global_curve, 

                       K.max = 5, 

                       F.threshold = 50, 

                       stimulation.intensity = 35, 

                       stimulation.wavelength = 470, 

                       background.fitting = FALSE, 

                       output.plot = TRUE) 

 

# compare decay constants with literature values 

plot_PhotoCrosssections(component_list, 

                        stimulation.intensity = 35, 

                        stimulation.wavelength = 470) 
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# scan through data set, decompose OSL curves, build L/T tables, fit growth 

curves and apply rejection criteria. decompose_SARdata() calls 

decompose_OSLcurve() and Luminescence::plot_growthCurve() to calculate 

equivalent dose values from L/T tables 

SAR_results <- decompose_SARdata(lum_data, 

                                 components = component_list$components, 

                                 recuperation_rate = 0.05, 

                                 recycling_ratio = 0.1) 

 

# decompose and plot first OSL curve of data set as example 

example_curve <- lum_data[[1]]@records[[SAR_results$index[1]]]@data 

example_result <- decompose_OSLcurve(example_curve, 

                                     components=component_list$components, 

                                     algorithm = “det+nls”) 

plot_OSLcurve(example_curve, example_components) 

 

# display box plots of the De distributions and give a table with De 

medians back 

table_SARdata(SAR_results, 

              data.type = "De", 

              criterion = "median", 

              unit = “s”, 

              output.plot = TRUE) 

 

# further analyses can be performed with the function library Luminescence. 

Each list entry of SAR_results is saved as "RLum.Results" class. For 

example, the following function call gives a radial De plot of the fast 

component back 

Luminescence::plot_RadialPlot(SAR_results[[1]]) 
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A.2 Source code decompose_OSLcurve() 

Description 

The function calculates the CW-OSL component amplitudes by a determinant-based algorithm. It 

also estimates the standard deviation of the amplitudes by using the error propagation method. 

Arguments 

curve [RLum.Data.Curve] or [data.frame] (required): CW-OSL 

record. First column (x-axis) must contain time marks, Second column 

(y-axis) must contain signal values. Further columns will be ignored 

components [data.frame] (required): Template table containing the decay 

parameters of the OSL curve. One column must be named $lambda. It 

is recommended to provide also the integration interval parameters 

(columns t.start, t.end, ch.start, ch.end), which can be 

found by applying calc_OSLintervals on the global mean curve, 

calculated by sum_OSLcurves. If one or more column is 

missing, calc_OSLintervals is run automatically. 

error.calculation [string] (with default): integral error estimation approach, 

either "empiric" or "poisson" or a numerical value; Per default the 

data of curve$residual provided by simulate_OSLcurve is 

used to calculate an empiric standard error for each integral which 

will be processed in the error propagation formula. Alternatively the 

integral standard error can be calculated by assuming 

a poisson distributed signal error, known as Shot noise. This is 

suitable if the lack of data points on the x-axis circumvent a empiric 

error estimation, like with spatial or spectral resolved CCD 

measurements. Also the parameter can be set to a numerical 

value which will be handled as standard deviation per channel and 

added to the Poisson distributed shot noise 

Return value 

The input table components will be returned with added/overwritten columns: $n, 

$n.error, $n.residual, $I, $I.error 

 

 

decompose_OSLcurve <- function( 

  curve, 

  components, 

  background.fitting = FALSE, 

  algorithm = "det+nls", # "det", "nls", "det+nls" 

  error.calculation = "empiric", # "poisson", "empiric", "nls", numeric      

  verbose = TRUE 

){ 

http://127.0.0.1:14133/help/library/OSLdecomposition/help/RLum.Data.Curve-class
http://127.0.0.1:14133/help/library/OSLdecomposition/help/data.frame
http://127.0.0.1:14133/help/library/OSLdecomposition/help/data.frame
http://127.0.0.1:14133/help/library/OSLdecomposition/help/calc_OSLintervals
http://127.0.0.1:14133/help/library/OSLdecomposition/help/sum_OSLcurves
http://127.0.0.1:14133/help/library/OSLdecomposition/help/calc_OSLintervals
http://127.0.0.1:14133/help/library/OSLdecomposition/help/data.frame
http://127.0.0.1:14133/help/library/OSLdecomposition/help/simulate_OSLcurve


 

A-6 
 

 

  ########## Input checks ########### 

 

  if(is(curve, "RLum.Data.Curve") == FALSE &  

     is(curve, "data.frame") == FALSE & is(curve, "matrix") == FALSE){ 

    stop("[decompose_OSLcurve()] Error: Input object is not of type  

          'RLum.Data.Curve' or 'data.frame' or 'matrix'!") 

  } 

 

  if(is(curve, "RLum.Data.Curve") == TRUE) curve <-  

                                           as.data.frame(get_RLum(curve)) 

 

  if (!("time" %in% colnames(curve)) || 

      !("signal" %in% colnames(curve))) { 

    curve <- data.frame(time = curve[,1], 

                        signal = curve[,2]) 

  } 

 

  if ((algorithm == "nls") &! (error.calculation == "nls")) { 

    if (verbose) warning("When algorithm 'nls' is chosen, error.calculation  

          must be also 'nls'. Argument changed to error.calculation='nls'") 

    error.calculation <- "nls" 

  } 

 

  channel.width <- curve$time[2] - curve$time[1] 

 

  # check if time beginns with zero and add channel.width if the case 

  if (curve$time[1] == 0)  curve$time <- curve$time + channel.width 

 

  components <- components 

 

  # are the integration intervals given? 

  if (!("t.start" %in% colnames(components)) || 

      !("t.end" %in% colnames(components)) || 

      !("ch.start" %in% colnames(components)) || 

      !("ch.end" %in% colnames(components))) { 

    if (verbose) warning("Integration intervals not provided.  

                          calc_OSLintervals() executed") 

 

  components <- calc_OSLintervals(components, 

                                  curve, 

                                  background.fitting = background.fitting, 

                                  verbose = verbose) 

  } 

 

  # if background.fitting = FALSE (recommended), remove last row 

  # this removes also the last integration interval (which is good) 

  if (is.na(components$lambda[nrow(components)]) && 

      (background.fitting==FALSE)) { 

 

    components <- components[1:(nrow(components)-1),] 

  } 

 

  ########## Set parameters ########### 

 

  K <- nrow(components) 

  X <- c(1:K) 

  signal <- curve$signal[1:components$ch.end[K]] 

  time <- curve$time[1:components$ch.end[K]] 

  components$n <- rep(NA, K) 

  components$n.error <- rep(NA, K) 

  components$n.residual <- rep(NA, K) 
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  lambda <- components$lambda 

  t.start <- components$t.start 

  t.end <- components$t.end 

  ch.start <- components$ch.start 

  ch.end <- components$ch.end 

 

  ### calculate integrals  ### 

 

  I <- NULL 

  for (i in X) { 

    I <- c(I, sum(signal[c(ch.start[i]:ch.end[i]) ])) 

  } 

  components$bin <- I 

  components$bin.error <- rep(NA, K) 

  n <- NULL 

 

  ######################### DET ########################### 

 

  if ((algorithm == "det")||(algorithm == "det+nls")) { 

 

    ### define matrices ### 

 

    # Build denominator matrix 

      D <- matrix(0,K,K) 

      for (i in X) { 

        for (j in X) { 

 

          if (is.na(lambda[j])) { 

 

            D[i, j] <- t.end[i] - t.start[i] 

          } else { 

 

            D[i, j] <- exp(-t.start[i] * lambda[j]) - exp(- t.end[i] *  

                       lambda[j]) 

          } 

        } 

      } 

 

    # Build enumerator matrices 

    A <- list(NULL) 

    for (j in X) { 

 

      A.temp <- D 

      A.temp[,j] <- I 

      A[[j]] <- A.temp 

    } 

 

    ### Calculate component amplitudes ### 

    for (i in X) { 

 

      n.temp <- det(A[[i]])/det(D) 

      n <- c(n, n.temp) 

    } 

    components$n <- n 

 

  }  ########### end DET ############ 
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  ######################### NLS ########################### 

 

  if ((algorithm == "nls")||(algorithm == "det+nls")) { 

 

    # use outcome from DET as start parameters. If not given, use integral  

      values 

    if(is.null(n)) n <- I 

 

    ### Create fit formula ### 

    n.names <- paste0("n.",1:K) 

 

    if (is.na(components$lambda[K])) { 

 

      lambda <- components$lambda[1:(K - 1)] 

      decays <- paste(n.names[1:(K - 1)], 

                      " * (exp(-",lambda," * (time - ", channel.width,")) –  

                          exp(-",lambda," * time))" 

                    , collapse=" + ") 

      decays <- paste0(decays, " + ", n.names[K], " * ",channel.width) 

 

    } else { 

 

      decays <- paste(n.names," * (exp(-",components$lambda," *  

        (time - ", channel.width,")) - exp(-",components$lambda," * time))" 

                      , collapse=" + ") 

    } 

 

    fit.formula <- as.formula(paste0("signal ~ ", decays)) 

    names(n) <- n.names 

 

    ### try Gauss-Newton fit ### 

    fit <- try(nls(fit.formula, 

                   data = curve, 

                   start = c(n)), 

               silent = TRUE) 

 

    if (attr(fit,"class") == "try-error") { 

 

      if (algorithm == "nls") { 

 

        warning("nls-fit failed. Input component table returned") 

        return(components) 

      } else { 

 

        if (verbose) warning("nls-fit failed. Falling back to det-results")        

        algorithm <- "det-fallback" 

      } 

 

    } else { 

 

      n <- coef(fit) 

      components$n <- n 

 

      # add error estimations of nls-fit as default 

      components$n.error <- summary(fit)$parameters[, "Std. Error"][X] 

    } 

  } ########### end NLS ############ 
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  ################### ERROR CALC ################## 

 

  if ((error.calculation == "empiric") 

      || (error.calculation == "poisson") 

      || is.numeric(error.calculation)) { 

 

    ### Calculate signal bin variances  ### 

    I.err <- NULL 

    if (error.calculation == "empiric") { 

 

      # Calc reconstructed noise-free curve 

      curve <- simulate_OSLcurve(components, curve, simulate.curve = FALSE) 

 

      # Calc corrected sample variance 

      for (i in X) { 

 

        if (ch.start[i] == ch.end[i]) { 

 

          # if signal bin consists just of one channel, assume Poisson  

            statistics: 

          I.err <- I[i]^0.5 

        } else { 

 

          # in all other cases: Use the corrected sample variance formula 

          korrektor <- length(ch.start[i]:ch.end[i]) /  

                       (length(ch.start[i]:ch.end[i]) - 1) 

          I.err <- c(I.err, 

                     (korrektor *  

                      sum(curve$residual[ch.start[i]:ch.end[i]]^2))^0.5) 

        } 

      } 

    } else { 

 

      # Use poisson approach, add instrumental noise if defined 

      if (!is.numeric(error.calculation)) error.calculation <- 0 

 

      for (i in X) { 

 

        I.err[i] <- (I[i] + length(ch.start[i]:ch.end[i]) * 

                    error.calculation^2 )^0.5 

      } 

    } 

    components$bin.error <- I.err 

 

    ### Propagation of uncertainty ### 

    for (k in X) { 

      sum.err <- 0 

 

      for (i in X) { 

 

        A.k <- A[[k]] 

 

        # Differate the determinant term after I[j] 

        A.k[i,] <- 0 

        A.k[,k] <- 0 

        A.k[i,k] <- 1 

 

        sum.err <- sum.err + (det(A.k)*I.err[i])^2 

      } 

 

      components$n.error[k] <- sum.err^0.5 / det(D) 
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    } 

  } ############ end ERROR CALC ############ 

 

 

  ########## component residuals  ########### 

  # set the end of the record as the end of stimulation. Need not to be the  

    same value as t.end 

  stim.end <- curve$time[length(curve$time)] 

  for (i in X) { 

 

    components$n.residual[i] <- round(n[i] * exp(- stim.end * lambda[i])) 

  } 

 

  if (verbose) print(components) 

 

return(components) 

} 
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A.3 Source code calc_OSLintervals() 

Description 

The function provides the integration intervals for CW-OSL component separation 

with decompose_OSLcomponents 

Arguments 

components data.frame (required): Table containing the decay constants of the 

signal components 

curve data.frame (optional): OSL signal curve. The x-axis (time axis) will be 

used to define channel.width and channel.number 

channel.width numeric (optional): channel width in seconds. Necessary if curve is not 

given 

channel.number integer (optional): number of channels resp. data points. Necessary 

if curve is not given 

t.start numeric (with default): starting point of the first interval, per default the 

start of the measurement 

t.end numeric (optional): end point of the last interval, per default the end of 

the measurement 

Return value 

The input table components data.frame will be returned with four additional 

columns:$t.start, $t.end defining the interval borders in time 

$ch.start, $ch.end defining the intervals as channels 

 

 

calc_OSLintervals <- function( 

  components, 

  curve = NULL, 

  background.fitting = TRUE, 

  channel.width = NA, 

  channel.number = NA, 

  t.start = 0, 

  t.end = NA, 

  verbose = TRUE 

){ 

 

  ########## is a template curve given? ########### 

 

  if (!is.null(curve)) { 

 

    dt <- curve$time[2] - curve$time[1] 

    n <- length(curve$time) 

 

http://127.0.0.1:14133/help/library/OSLdecomposition/help/decompose_OSLcomponents
http://127.0.0.1:14133/help/library/OSLdecomposition/help/data.frame
http://127.0.0.1:14133/help/library/OSLdecomposition/help/data.frame
http://127.0.0.1:14133/help/library/OSLdecomposition/help/numeric
http://127.0.0.1:14133/help/library/OSLdecomposition/help/integer
http://127.0.0.1:14133/help/library/OSLdecomposition/help/numeric
http://127.0.0.1:14133/help/library/OSLdecomposition/help/numeric
http://127.0.0.1:14133/help/library/OSLdecomposition/help/data.frame
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  } else if ((!is.na(channel.width)) && (!is.na(channel.number))) { 

 

    dt <- channel.width 

    n <- channel.number 

 

  } else { 

    warning("No template curve nor channel parameters given") 

    return(components) 

  } 

 

  # round start and end point to full increments 

  t0 <- floor(t.start / dt) * dt 

 

  ## set t.end if not preset 

  if (is.na(t.end) || (t.end > n*dt) || (t.end < 3*dt)) { 

    t.end <- n*dt 

  } else { 

    t.end <- floor(t.end / dt) * dt 

  } 

 

  # If the background also shall be fitted, add another component wit  

    lambda = 0 

  if (background.fitting) { 

 

    if (!is.na(components$lambda[nrow(components)])) { 

      new.row <- components[nrow(components),] 

      rownames(new.row) <- "Background" 

      new.row[1:length(new.row)] <- NA 

      new.row[1]  <- "Background" 

      components <- rbind(components, new.row) 

    } 

  } else { 

 

    if (is.na(components$lambda[nrow(components)])) { 

      components <- components[1:(nrow(components) - 1),] 

    } 

  } 

 

  component.number <- nrow(components) 

  lambdas <- components$lambda 

 

 

  ########## is there just 1 components? ########### 

 

  if (component.number == 1) { 

 

    components$t.start <- t0 

    components$t.end <- t.end 

    components$ch.start <- 1 + floor(t0 /  dt) 

    components$ch.end <- ceiling(t.end / dt) 

 

    return(components) 

  } 

 

  ########## Create matrix ########### 

 

  # channels: just the end of an interval. For example: 1:3 / 4:5 / 6:7  

    becomes c(0,3,5,7) 

  calc_determinant <- function(lambdas, channels,component.number, dt) { 

 

    M <- matrix(0,component.number,component.number) 

    for (i in c(1:component.number)) { 
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      for (j in c(1:component.number)) { 

 

        #P <- exp(-t0 * f.fast) - exp(-t1 * f.fast) 

        if (is.na(lambdas[j])) { 

 

          M[i, j] <- channels[i + 1] * dt - channels[i] * dt 

 

        } else { 

 

          M[i, j] <- exp(- channels[i] * dt * lambdas[j]) –  

                     exp(- channels[i + 1] * dt * lambdas[j]) 

        } 

 

      } 

    } 

 

    # calc determinante 

    return(abs(det(M))) 

  } 

 

 

  ########## Search for determinant maximum ########### 

 

  max_found <- FALSE 

  max_iteration <- 50 

  iterations <- 0 

  iterations.stop <- 20 * 2^component.number 

  iterations.bests <- 2 * 2^component.number 

  min.ch <- NULL 

  max.ch <- NULL 

  A <- data.frame(NULL) 

 

  # start parameters for the choosable time intervals 

  for (i in c(1:component.number - 1)) { 

    min.ch <- c(min.ch, i) 

    max.ch <- c(max.ch, n - component.number + i) 

  } 

 

  while ((max_found == FALSE) && (iterations < max_iteration)) { 

 

    # create random set of numbers 

    interval_set <- c(1,1) 

    while (any(duplicated(interval_set))) { 

      interval_set <- NULL 

      for (i in c(1:(component.number - 1))) { 

        interval_set <- c(interval_set, round(runif(1, min = min.ch[i], 

                          max = max.ch[i]))) 

      } 

    } 

 

    # ... and sort it 

    interval_set <- interval_set[order(interval_set)] 

 

    # add start and end value 

    #interval_set <- c(t0 / dt, interval_set, t.end / dt) 

 

    # now calc the determinante 

    det.value <- calc_determinant(lambdas, 

                                  c(t0 / dt, interval_set, t.end / dt), 

                                  component.number, 

                                  dt) 
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    # append the parameters to a data.frame 

    A <- rbind(A, c(det.value, interval_set)) 

 

    if (nrow(A) == iterations.stop) { 

 

      # order list elements by determinant value 

      A <- A[order(A[,1]),] 

 

      # reverse order to get large values first and reduce to the best 10  

        rows 

      A <- A[nrow(A):(iterations.stop - iterations.bests),] 

 

      # check if all elements are the same, then 

      if (all(A[,1] == A[1,1])) { 

 

        interval_set <- A[1,2:component.number] 

        max_found <- TRUE 

 

        if (verbose) { 

          writeLines(paste0("Maximum determinant = ", round(A[1,1],  

                            digits = component.number + 2), 

                            " with interval breaking channels [",  

                            paste0(interval_set, collapse = ", " ), 

                            "] found after ", iterations * iterations.stop,  

                            " iterations")) 

        } 

      } else { 

 

        # redefine start parameters 

        for (i in c(1:(component.number - 1))) { 

          min.ch[i] <- min(A[,i + 1]) 

          max.ch[i] <- max(A[,i + 1]) 

        } 

        iterations <- iterations + 1 

        A <- data.frame(NULL) 

      } 

    } 

  } 

 

  components$t.start <- unlist(c(t0, interval_set * dt)) 

  components$t.end <- unlist(c(interval_set * dt, t.end)) 

  components$ch.start <- unlist(c(1 + floor(t0 /  dt), interval_set + 1)) 

  components$ch.end <- unlist(c(interval_set, ceiling(t.end / dt))) 

 

  return(components) 

} 
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B Correlation tables  
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B.1 Step 1 – Correlation tables 

Calculated with: 2019-08-21_Test_Step1.Rmd 

Input-Output correlation: 

 

Output cross-correlation: 
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K_output 0.74 0.34 0.31 0.31 -0.02 0.04 0.30 0.23 0.35 0.04
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B.2 Step 2 – Correlation tables 

Calculated with: 2019-11-15_Test_Step2.Rmd 

No simulated background signal; no background determination; Method = det 

 

Input-Output correlation: 

 

 

Output cross-correlation: 
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C Decomposition analysis reports 

C.1 Full BT594 analysis report 

OSL decomposition report (alpha version) 

Table of Contents 

Basic idea .............................................................................................................................................................. 20 
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Data pre-treatment .......................................................................................................................................... 21 

Step 1 – Evaluation of component number and decay constants ................................................. 22 

Step 2 – Single curve decomposition ........................................................................................................ 26 

Step 3 – Equivalent dose calculation ........................................................................................................ 28 

Rejection criteria ............................................................................................................................................... 30 

Paleodose and age estimation ..................................................................................................................... 32 

Summary .............................................................................................................................................................. 33 

References ..................................................................................... Fehler! Textmarke nicht definiert. 

 

Data set BT594_607_608_612_619.BIN 

Script executed at 2019-10-29 15:02:24 

Preface 
This report was automatically generated using the Rmarkdown (see Xie et al. 2018) script 
EvaluateDataSet.Rmd in the R package OSLdecomposition written and maintained by Dirk Mittelstraß 
(dirk.mittelstrass@luminescence.de). The dose calculation deploys also functions of the R packages numOSL 
introduced by Jun Peng et al. (2013) and Luminescence introduced by Sebastian Kreutzer et al.(2012) 

This report and the containing results can be used, shared and published by the data set maintainer at will. If 
the results are published, however, it is demanded to state the main R package OSLdecomposition including 
its version number (0.10.28). It is also recommended to add this report to the supplement of your publication. 

  

mailto:dirk.mittelstrass@luminescence.de
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Basic idea 

The method is based on the assumption, that every OSL curve can be described as sum of signal components 
(Bailey et al. 1997). It is further assumed, that each signal component can be described by an exponential decay 
following first order kinetics. The shape of every CW-OSL curve can then be modelled by: 

𝐼(𝑡) = ∑𝑛𝑖

𝐾

𝑖=1

𝜆𝑖e  (−𝜆𝑖𝑡) 

Here, I(t) represents the luminescence signal during continuous stimulation, K the number signal components, 
ni the integrated signal intensities (or just ‘signal values’) of each signal component and 𝜆𝑖  their decay 
constants. We also assume, that the set of decay constants is the same for all OSL curves in a given data set. So 
we can apply the following data analysis approach: 

 

1. Determine the component number K and the decay parameters 𝜆𝑖, …, 𝜆𝐾 globally by multi-exponential 
decay fitting at one representative superposition OSL curve 

2. Determine the signal values n1, …, nK for each OSL curve by a decomposition algorithm 

3. Determine the natural dose signal component-wise by building separate signal-dose growth curves for 
each set of ni values 

 

 

Script & data parameter 

Script conditions  

Script version 2019-10-28 

R version 3.6.1 

Packages performing calculations OSLdecomposition 0.10.28 

 Luminescence 0.9.5 

 numOSL 2.6 

The data set is imported to R by the function Luminescence::read_BIN2R() programmed by Kreutzer and 
Fuchs (2019). Files in the BIN and the BINX format produced by Risoe DA15, Risoe DA20, lexsyg research and 
lexsyg smart TL/OSL readers are supported. 

Data set conditions  

Evaluated record types OSL 

Data set entries (aliquots) 48 

Indicies of dismissed aliquots 25 - 48 

Indicies of background measurements none 

Analyzed aliquots 24 

OSL records per entry 14 

Channels N = 100 

Channel width  𝑡 = 0.2 s 

Measurement time tend = 20 
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Figure 1: Raw data points of all OSL curves (grey opaque) and natural dose OSL curve of first aliquot (red) 

 

Sample conditions  

Sample type coarse grain quartz 

Expected age ~ 25 ka 

Environmental dose rate 2.92 Gy ka
-1

 

Expected dose ~ 73 Gy 

Laboratory dose rate 0.1373 Gy s
-1

 

Stimulation wavelength 470 nm 

Assumed stimulation intensity 50 mW cm
-2

 

Algorithm settings  

Cut measurements if exceeding tmax = 40 s 

Maximum allowed components Kmax = 5 

Threshold F-value Fthreshold = 50 

Decomposition algorithm det+nls 

Growth curve fitting algorithm EXP 

Allowed recuperation 5% 

Allowed recycl. ratio deviation 10% 

Data pre-treatment 

Prior data evaluation, the records will be corrected for signal background, measurement over-length, etc., 
depending on the script settings and the provided data. The following corrections were performed by applying 
the function prepare_OSLdata(): 
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Step 1 – Evaluation of component number and decay constants 

For calculating the decay parameters, one representative OSL curve is needed. This is provided by combining all 
records to one global mean curve. Each data point of the global curve represents the arithmetic mean of all 
data point values of the same channel in all OSL curves. This increases the signal-to-noise ratio by about one to 
two orders of magnitude, but still maintains the decay parameter information. 

 

Figure 2: Global mean OSL curve (blue) and data points of all OSL records (grey opaque) 

We take the global mean curve and perform a multiple cycles of multi-exponential nonlinear regression. In 
each cycle, the number of components K increases by one. With increasing number of components, decreases 
the signal deviation (residual curve) between the fitted model curve and the measured data and the fit gets 
better. 

The underlying algorithm was proposed and described by Bluszcz & Adamiec (2006) and realized in R by the 
function numOSL::decomp() by Peng et al. (2013). Their function is used in fit_OSLcurve(), which 
calculated the following series of fittings, displayed with plot_OSLcurve(): 

The subsequent diagrams are structured the following way: 

• Upper left: Global mean curve (grey), fit model curve (black) and component signals 

• Upper right: Same as log-log diagram 

• Lower left: Residual curve between fit and global mean curve 

• Lower right: Result table with estimated type of component names (colored) 
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Figure 3: Global mean curve fit with K = 1 components 

——— 

 
Figure 4: Global mean curve fit with K = 2 components 

——— 

 
Figure 5: Global mean curve fit with K = 3 components 

——— 
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Figure 6: Global mean curve fit with K = 4 components 

——— 

 
Figure 7: Global mean curve fit with K = 5 components 

——— 
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F-test 
But which of these fittings gives back a sufficient model of the global mean curve, without over-fitting it? We 
solve this by comparing the residual square sum (RSS) of each fitting with the RSS value of the previous fitting. 
Bluszcz & Adamiec (2006) propose to use a F-test: 

 𝐾 =
(𝑅  𝐾−1 − 𝑅  𝐾) 2

𝑅  𝐾(𝑁 − 2𝐾)
 

If FK falls below the preset threshold value of Fthreshold = 50, the new fitting model with K components is 
apparently not significantly better than the K - 1 model. 

Table 1: Decay constants and fit quality parameters for multi-exponentional decay fitting with K components 

K 𝜆1 ( −1) 𝜆  ( −1) 𝜆  ( −1) 𝜆  ( −1) 𝜆  ( −1) RSS  𝐾 

1 1.76     3.99e+05  

2 2.54 0.0333    4.84e+03 3.91e+03 

3 3.17 0.796 0.0164   216 1.01e+03 

4 4.34 2.03 0.353 0.00885  27.1 320 

5 5.66 2.65 1.08 0.249 0.00576 24 5.79 

The fitting with K = 4 components is found to be the best suiting model to describe the given sample. Signal 
components with not-first-order kinetics, however, can lead to over-fitting. It is recommended to take the 
results of the K = 3 fitting model also into consideration. 

If the sample was measured with a stimulation light wavelength of about 470 nm and a stimulation light 
intensity of 50 mW cm

-2
 as presetted, the photoionisation cross-sections of the components can be calculated. 

These can be compared with the quartz LM-OSL findings given in literature. 

 

Figure 8: Comparison of decay constants between fitting cases and comparison with reference values. Red 
square: Best fit 
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Step 2 – Single curve decomposition 

In Step 2, we decompose each OSL curve into its signal components. We set the decay constants found in Step 
1 as fixed values for all OSL curves of the data set. This allows us to apply the following signal decomposition 
method: 

 

1. Divide the measurement time into K intervals. These intervals are calculated and optimized globally by 
calc_OSLintervals(). 

2. Integrate the signal curve of each OSL record over these intervals. From the integration values and the 
fitting model found in Step 1, build one equation system with K equations for each OSL record. 

3. Solve the equation system by an analytic determinant based method, called ‘Cramer’s rule’, and get the 
area under the component curve or ‘intensity’ nk for each signal component 

4. To enhance stability and precision of the method, refine the set of nk values in a quasi-linear regression 
using base::nls(). If this refining-fit fails, go on with the Cramer’s rule achieved values. 

5. Calculate the standard deviation of the integration values from step 2 by the residuals between fit-model 
OSL curve and real data points 

6. Apply the propagation of uncertainty method onto Cramer’s rule and calculate the uncertainty 𝜎𝑘  for 
each component intensity value nk 

 

All steps, beside the first step, are realized in decompose_OSLcurve(). The table in figure 9 displays the 
particular outcome of this method for the K = 4 model applied at the first OSL curve of the first aliquot as 
example. The parameter tailn gives back the area under the component which is not displayed in the OSL 
diagram. If the measurement was not cutted in the data-pretreatment and an appropriate background 
correction was performed, tailn equals the not-released signal of the component. 

 

Figure 9: 4-component decomposition of the first OSL record in the data set. The vertical lines in the residual 
diagram show the integration intervals 
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L/T table 

We assume the data set is measured in accordance to the SAR protocol defined by Murray and Wintle (2000). 
Then every OSL measurement is followed by the regeneration of a fixed test-dose (here 0 Gy) and the 
measurement of the OSL signal related to this test-dose. The testdose-related OSL signal is indicated by the 
variable Ti, the natural and regenerated dose OSL signal is indicated by the variable Li. The normalized OSL 
signal is therefore given by 𝐿𝑖 𝑇𝑖 . 

A L/T table provides a structure for the signal values and dose regeneration points we need to build dose-signal 
curves in Step 3 and to test for signal behaviour criteria. One L/T table per signal component and aliquot is 
built. To avoid some potential issues in Step 3, we apply the following conditions when assigning the signal 
values to the table: 

• If the measurement time was not cutted: Substract the value of tailn from the nk value of the subsequent 
OSL measurement. This enables correctly built L/T tables for slow decaying components. 

• If the measurement time was cutted: Do not build L/T tables of a component, when more than 1% of the 
components signal would be transferred into tailn. So the component can not be further evaluated and 
misleading conclusions are avoided. 

• Set negative 𝐿𝑖 𝑇𝑖  values to 𝐿𝑖 𝑇𝑖 = 0 to avoid calculation issues although negative values are 
mathematically and physically possible (due to photo-transfer). 

Table 2: L/T table of fastest decaying component of first aliquot for the K = 4 case. Test dose for generating all Ti 
is: DT = 0 Gy 

i dose (Gy) 𝐿𝑖 𝑇𝑖  𝜎𝐿𝑖 𝑇𝑖 𝐿𝑖  𝜎𝐿𝑖  𝑇𝑖  𝜎𝑇𝑖 

0 natural 3.13 0.16 5638 99 1801 86 

1 19.3593 1.08 0.05 1984 46 1831 70 

2 48.3296 2.32 0.13 4444 116 1914 93 

3 83.8903 3.63 0.11 7192 187 1979 34 

4 103.2496 3.96 0.17 8527 271 2154 65 

5 19.3593 1.15 0.05 2625 92 2289 64 

6 0 0.00 0.02 -26 49 2311 72 
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Step 3 – Equivalent dose calculation 

From the L/T table, we create a signal dose curve or “growth curve” by calling the function 
Luminescence::plot_GrowthCurve()programmed by Kreutzer and Dietze (2019). The function plots the 
luminescence signal values 𝑦 = 𝐿𝑖 𝑇𝑖  against the regeneration doses x = Di. Several fitting models are 
selectable. We will use the default model: 

𝑦(𝑥) = 𝑎(1 − 𝑒−(𝑥+𝑐) 𝑏) 

Here a, b and c are fitting factors. The natural or ‘equivalent’ dose De related to the natural luminescence signal 
is calculated by solving 𝑦(𝐷𝑒) = 𝐿0 𝑇0. The uncertainty of the equivalent dose De is calculated by a Monte 
Carlo simulation assuming normal distributed 𝐿𝑖 𝑇𝑖  values with a standard deviation equal to 𝜎𝐿𝑖 𝑇𝑖. 

 

Figure 10: Signal-dose curve of the fastest decaying component of the first aliquot, plotted by 
Luminescence::plot_GrowthCurve(). Lower left: Distribution of Monte Carlo simulatd De values, used to 
calculate the De error value. Lower right: Variation of the normalized Test dose signal over the measurement 
sequence, useful to display luminescence sensitivity changes. 

 

We calculate the equivalent doses De for all aliquots and all components for which L/T tables were built. 

We do this not just for the K = 4 case we selected per F-test in Step 1 but also for all K < 4 cases. This way, 

we gain dose information even if the K = 4 doses aren’t sucessfully evaluated due low signal-to-noise ratio 

or over-fitting in Step 1. 

Classic signal calculation approaches 

For comparison, we also calculate De values by late light background substraction and early light background 
substraction. The late light background substraction approach or short ‘late background’ approach was defined 
by Murray & Wintle (2000) in their definition of the standard SAR protocol. Here, the function 
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calc_classisOSLsignal() performs the signal calculation and sets the integration intervals following the 
rules by Murray & Wintle (2000). The ‘early background’ approach introduced by Cunningham and Wallinga 
(2010) try to remove not-Fast-signal components by substraction the signal directly after the Fast signal 
decayed. 

For this data set, the following signal and background intervals hat been determined: 

 Signal interval Background interval 

Late light background substraction 0 to 0.6 s 14 to 20 s 

Early light background substraction 0 to 0.4 s 0.4 to 1.4 s 

 

The simplest way to estimate the stored dose information is by calculating the medians of the De 

populations. 

Table 4: Medians of the De-distributions from 24 aliquots from different signal calculation approaches. The first 
line lists the median values of the fastest decaying signal component, the second line the second fastest, etc.. 
The value inside the brackets () shows the number of sucessful calculated De’s. 

comp. late b. early b. K = 1 K = 2 K = 3 K = 4 

1 60 Gy (24) 67 Gy (24) 61 Gy (24) 60 Gy (24) 75 Gy (22) 71 Gy (20) 

2    97 Gy (23) 34 Gy (23) 59 Gy (20) 

3     131 Gy (22) 18 Gy (23) 

4      188 Gy (20) 

Note, that fit failures are common and can happen if the 𝐿𝑖 𝑇𝑖  values have to large errors or don’t follow a 
growth curve or if 𝐿0 𝑇0 is larger than the fit parameter a. 

Table 4 vizualized in a series of box plots, we get: 

 

Figure 11: Box plots of the De-distributions from 24 aliquots from different signal calculation approaches. The 
dashed line shows the expected does. Box plot rules: The whiskers enclose all four quartiles besides outlier. The 
rectangles enclose the second and third quartile. The middle line shows the median 
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Rejection criteria 

The equivalent doses calculated so far, are not necessarily physical meaningful. Murray and Wintle introduced 
two tests to detect and reject not trustworthy De values. 

Recycling ratio test 

In the SAR protocol, the first and the last dose regeneration cycle apply usally the same dose (=recycled dose). 
The generated normalized luminescence signals 𝐿1 𝑇1 and 𝐿   𝑡 𝑇   𝑡  should be about equal. If the ratio 
between both differs significantly from one, it implicates that the applied doses cannt be monitored precisely. 

Table 5: Mean and standard deviation of the recycling ratios from all successfully fitted aliquots 

comp. late b. early b. K = 1 K = 2 K = 3 K = 4 

1 0.96   0.1 0.99   0.16 0.94   0.08 0.95   0.12 0.99   0.2 1.08   0.83 

2    0.92   0.13 0.97   0.83 1.22   0.88 

3     1.05   0.39 0.89   0.54 

4      2.26   2.11 

Be aware, that the recycling ratio calculation is quite noise-sensitive, especially if small test doses are chosen. 
For low-SNR data sets, false positive as well as false negative aliquot rejections are likely. 

Recuperation test 

In the regeneration cycle after the cycle with the largest applied dose, usually no dose is applied before 
measuring Li. If no dose is applied, the corresponding normalized luminescence signal 𝐿𝑖 𝑇𝑖  should be about 
zero. The occurence of significant luminescence signal hints towards the appearance of charge transfer into the 
observed OSL traps unrelated to dose regeneration. 

Table 6: Mean and standard deviation of the recuperation rates from all successfully fitted aliquots 

comp. late b. early b. K = 1 K = 2 K = 3 K = 4 

1 0.016   0.014 0.009   0.011 0.111   0.058 0.001   0.002 0.011   0.015 0.024   0.04 

2    0.265   0.108 0.037   0.104 0.046   0.109 

3     0.082   0.076 0.492   1.312 

4      0.005   0.017 
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We use the range of acceptance proposed by Murray and Wintle (2000) for both tests: 

 Formula Range of acceptance 

Recycling ratio 
𝑟 𝑒𝑐 𝑐 𝑖  =

𝐿1 𝑇1
𝐿   𝑡 𝑇   𝑡

 
0   𝑟 𝑒𝑐 𝑐 𝑖   1 1 

Recuperation rate 
𝑟 𝑒𝑐  𝑒  𝑡𝑖  =

𝐿 𝑖=0
 𝑇𝑖

𝐿0 𝑇0
 

𝑟 𝑒𝑐  𝑒  𝑡𝑖   0 0  

 

How many aliquots fullfill these criteria? 

Table 7: Number of aliquots which passed rejection criteria successfully. 

comp. late b. early b. K = 1 K = 2 K = 3 K = 4 

1 13 of 24 14 of 24 2 of 24 11 of 24 9 of 24 1 of 24 

2    1 of 24 3 of 24 4 of 24 

3     1 of 24 1 of 24 

4      9 of 24 

Applying the test criteria should reject the majority of inaccurate De measurements. How does this change the 
De dose distribution? 

 

Figure 12: Box plots of the De-distributions from 24 aliquots which passed the rejection criteria. 
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Paleodose and age estimation 

We will use two approaches to calculating the burial age from a distribution of equivalent dose values which 
are common in the geoscientific community: The central age model and the minimum age model. Both models 
were introduced by Galbraith et al. (1999) and are comprehensibly summarized in Galbraith and Roberts 
(2012). We will use this step also to transform the dose values into age values, given an environemtal dose rate 
was given at the beginning of this script. 

Central age model 

The central age model (short: ‘CAM’) proposed by Galbraith et al. (1999) assumes that the logarithmic values of 
the De’s are about normal distributed. But this normal distribution arises not just from measurement errors of 
the De-evaluation but also from unknown geologic or physical uncertainties. The CAM algorithm try to calculate 
a variance-weighted arithmetic mean from the log(De) values but includes an unknown uncertainty parameter 
in the weigthing term, called ‘overdispersion’. The overdispersion 𝜎𝑏 is used as second fitting parameter 
besides the paleodose. In case the De-distribution is just caused by instrumental errors, the overdisperion 
should be around zero. For geologic samples, overdispersions up to 𝜎𝑏 = 0   are common. We calculate the 
CAM paleodoses using Luminescence::calc_CentralDose() programmed by Burow (2019a). 

In a nutshell: The CAM resulting paleodose is a kind of weighted geometric mean of the equivalent doses with 
an extra property (the overdispersion) indicating the pre-measurement dose uncertainty. 

Table 8: Central age model obtained paleodoses. In the brackets: overdispersion. 

comp. late b. early b. K = 1 K = 2 K = 3 K = 4 

1 20   1.7 ka 
(0.3) 

24.1   1.5 ka 
(0.17) 

30.6   6.6 
ka (0) 

22.2   1.4 ka 
(0.17) 

28.9   1.3 ka 
(0.04) 

- 

2    - 19.6   3.3 ka 
(0) 

32.1   5.4 ka 
(0) 

3     - - 

4      72.7   5.4 ka 
(0.15) 

Minimum age model 

The central age model does not take into account that the sample might be bleached incompletely before the 
burial event. For that case, Galbraith et al. (1999) assume a truncated normal distribution of the De values 
spreaded towards higher doses. The central age model would lead to over-estimated paleodoses, so they 
added one more fitting parameter to the CAM approach to compensate for the spreading. If the MAM 
paleodose is significantly lower than the CAM paleodose, incomplete bleaching before burial is likely. We 
calculate the MAM paleodoses using Luminescence::calc_CentralDose() programmed by Burow 
(2019b). 

 

Table 9: Minimum age model obtained paleodoses. b = 0.2. 

comp. late b. early b. K = 1 K = 2 K = 3 K = 4 

1 15.7   2.7 ka 24   2.6 ka 30.5   11.2 ka 22.1   2.5 ka 26.8   3.5 ka 68.5   363016.8 ka 

2    62   21.3 ka 19.6   6.5 ka 31.3   8.5 ka 

3     312.6   138 ka 1.8   Inf ka 

4      73.2   10.4 ka 

In the MAM algorithm the overdispersion 𝜎𝑏 becomes an input parameter. In lack of experimental obtained 𝜎𝑏 
(a fully bleached sample is needed), we set 𝜎𝑏 = 0 2 per default, as proposed by Galbraith and Roberts (2012). 
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Summary 

Signal-component wise dose evaluation of the file BT594_607_608_612_619.BIN: 

 

Figure 13: Left: Data points of whole data set with first curve (red) and global mean curve (blue). Right: Global 
mean curve (grey) fitted (black) with 4 components (colored) 

 

Figure 14: Evolution of the decay constants with increasing number of components K. Red square: Best fit 
chosen through F-test 

 

Table 10: Result overview. Mean intensity: Area under the signal component curve in the global mean OSL 
curve. Passed aliquots: How many aliquots with successfully obtained De value passed the rejection criteria? 
CAM and MAM use just passed aliquots. CAM: Overdisperion ratio in brackets. MAM: Overdisperion ratio is 
assumed to be 0.2. 

Method Component 
Decay 

constant 
Mean 

intensity 
Passed 

aliquots 
Central age 

model 
Minimum age 

model 

late b.    13 of 24 20   1.7 ka 
(0.3) 

15.7   2.7 ka 

early b.    14 of 24 24.1   1.5 ka 
(0.17) 

24   2.6 ka 

K = 3 Fast 3.2  −1 1.9e+03 9 of 24 28.9   1.3 ka 
(0.04) 

26.8   3.5 ka 

K = 3 Medium 0.8  −1 1.1e+03 3 of 24 19.6   3.3 ka 
(0) 

19.6   6.5 ka 

K = 3 Slow2 0.016  −1 2.3e+04 1 of 24 - 312.6   138 ka 

K = 4 Component 
1 

4.3  −1 7.8e+02 1 of 24 - 68.5   363016.8 
ka 

K = 4 Component 
2 

2  −1 1.7e+03 4 of 24 32.1   5.4 ka 
(0) 

31.3   8.5 ka 
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K = 4 Component 
3 

0.35  −1 9.1e+02 1 of 24 - 1.8   Inf ka 

K = 4 Component 
4 

0.0088  −1 3.7e+04 9 of 24 72.7   5.4 ka 
(0.15) 

73.2   10.4 ka 

 

 

 

 

Computing time: 10.60348 mins 
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C.2 BT1214 analysis summary 

Signal-component wise dose evaluation of the file BT1214_all_FKQ_mx.BIN: 

 

Figure: Left: Data points of whole data set with first curve (red) and global mean curve (blue). Right: Global 
mean curve (grey) fitted (black) with 5 components (colored) 

 

Figure: Evolution of the decay constants with increasing number of components K. Red square: Best fit chosen 
through F-test

 

Table: Result overview 

Method Component 
Decay 

constant 
Mean 

intensity 
Passed 

aliquots Central age model 
Minimum age 

model 

late b.    29 of 30 50.9   0.3 ka (0.02) 51   2 ka 

early b.    24 of 30 50   0.7 ka (0) 50.5   2.2 ka 

K = 3 Component 1 1.5  −1 7.7e+04 24 of 30 51   0.8 ka (0) 51.4   2.3 ka 

K = 3 Medium 0.49  −1 8.8e+04 26 of 30 39   0.6 ka (0) 39.2   1.7 ka 

K = 4 Fast 1.7  −1 4.6e+04 8 of 30 45.9   2.8 ka (0) 46.5   6.1 ka 

K = 4 Component 2 0.75  −1 9.3e+04 22 of 30 48.6   1.4 ka (0) 49.6   2.7 ka 

K = 4 Component 3 0.21  −1 3.8e+04 2 of 30 45.2   7.3 ka (0) 47.2   15 ka 

K = 5 Fast 1.8  −1 3.6e+04 3 of 30 74.4   22.3 ka (0) 75.2   33.2 ka 

K = 5 Component 2 0.89  −1 8.1e+04 10 of 30 40.5   4.6 ka (0.19) 40.6   7.3 ka 

K = 5 Medium 0.4  −1 4.1e+04 7 of 30 50.9   8.5 ka (0.3) 42.7   11.3 ka 
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C.3 BK8 analysis summary 

Signal-component wise dose evaluation of the file BK-8_1295-1280_63-40um_2mm_Qz1_ed.BIN: 

 

Figure: Left: Data points of whole data set with first curve (red) and global mean curve (blue). Right: Global 
mean curve (grey) fitted (black) with 4 components (colored) 

 

Figure: Evolution of the decay constants with increasing number of components K. Red square: Best fit chosen 
through F-test

 

Table: Result overview 

Method Component 
Decay 

constant 
Mean 

intensity 
Passed 

aliquots Central age model 
Minimum age 

model 

late b.    16 of 20 31   2 ka (0.27) 25   3 ka 

early b.    9 of 20 31   2 ka (0.03) 32   5 ka 

K = 3 Component 1 1.2  −1 5.6e+03 10 of 20 31   2 ka (0.14) 31   4 ka 

K = 3 Medium 0.31  −1 1.1e+04 7 of 20 26   2 ka (0.03) 25   4 ka 

K = 4 Fast 1.6  −1 3e+03 4 of 20 27   7 ka (0.3) 21   10 ka 

K = 4 Component 3 0.17  −1 8.1e+03 8 of 20 65   16 ka (0.15) 65   24 ka 
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C.4 Oy7 analysis summary 

Signal-component wise dose evaluation of the file Oy7-01-14_63-100_1mm_Qz1-1_ed.BIN: 

 

Figure: Left: Data points of whole data set with first curve (red) and global mean curve (blue). Right: Global 
mean curve (grey) fitted (black) with 4 components (colored) 

 

Figure: Evolution of the decay constants with increasing number of components K. Red square: Best fit chosen 
through F-test

 

Table 10: Result overview 

Method Component 
Decay 

constant 
Mean 

intensity 
Passed 

aliquots 
Central age 

model 
Minimum age 

model 

late b.    15 of 20 97   5 ka (0.2) 97   10 ka 

early b.    10 of 20 112   17 ka 
(0.38) 

75   21 ka 

K = 3 Fast 1.9  −1 3.9e+03 8 of 20 124   12 ka (0.1) 128   21 ka 

K = 3 Medium 0.37  −1 4.5e+03 4 of 20 62   13 ka (0.23) 59   20 ka 

K = 4 Fast 2.3  −1 2.5e+03 6 of 20 99   17 ka (0) 99   29 ka 

K = 4 Component 2 0.86  −1 3.3e+03 4 of 20 107   22 ka (0) 106   32 ka 

K = 4 Component 3 0.19  −1 3.7e+03 2 of 20 105   53 ka (0) - 
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C.5 Batagai analysis summary 

Signal-component wise dose evaluation of the file Batagai_2-7_B-2-47_OSL_63-100_2mm_Qz1_ed.BIN: 

 

Figure: Left: Data points of whole data set with first curve (red) and global mean curve (blue). Right: Global 
mean curve (grey) fitted (black) with 4 components (colored) 

 

Figure: Evolution of the decay constants with increasing number of components K. Red square: Best fit chosen 
through F-test

 

Table: Result overview 

Method Component 
Decay 

constant 
Mean 

intensity 
Passed 

aliquots Central age model 
Minimum age 

model 

late b.    14 of 20 155   25 ka (0.57) 99   16 ka 

early b.    4 of 20 168   36 ka (0.3) - 

K = 3 Fast 2  −1 3.6e+03 8 of 20 157   31 ka (0.49) 103   24 ka 

K = 3 Medium 0.39  −1 2.5e+03 6 of 20 62   15 ka (0.37) 49   18 ka 

K = 4 Fast 2.3  −1 2.5e+03 4 of 20 317   96 ka (0) 317   156 ka 

K = 4 Component 2 0.93  −1 2.1e+03 2 of 20 57   27 ka (0) - 

K = 4 Component 3 0.2  −1 2e+03 5 of 20 131   95 ka (0) 130   144 ka 
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D OSL dating without heating 

D.1 FB standard SAR protocol analysis summary 

Signal-component wise dose evaluation of the file FB_10Gy_SAR_classic.bin: 

 

Figure: Left: Data points of whole data set with first curve (red) and global mean curve (blue). Right: Global 
mean curve (grey) fitted (black) with 3 components (colored) 

 

Figure: Evolution of the decay constants with increasing number of components K. Red square: Best fit chosen 
through F-test

 

Table: Result overview 

Method Component 
Decay 

constant 
Mean 

intensity 
Passed 
aliquots Central age model 

Minimum age 
model 

late b.    10 of 10 8.7   0.1 Gy (0.02) 8.7   0.6 Gy 

early b.    10 of 10 8.8   0.1 Gy (0) 8.8   0.6 Gy 

K = 3 Component 1 0.79  −1 1.2e+05 10 of 10 8.7   0.1 Gy (0.01) 8.7   0.6 Gy 

K = 3 Component 2 0.077  −1 6e+03 2 of 10 7.9   0.4 Gy (0) 7.7   1.7 Gy 

K = 3 Component 3 0.0011  −1 3e+05 2 of 10 8.4   3.4 Gy (0.48) 5.3   2.9 Gy 
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D.2 FB no-heating protocol analysis summary 

Signal-component wise dose evaluation of the file FB_10Gy_SAR_RT.bin: 

 

Figure: Left: Data points of whole data set with first curve (red) and global mean curve (blue). Right: Global 
mean curve (grey) fitted (black) with 5 components (colored) 

 

Figure: Evolution of the decay constants with increasing number of components K. Red square: Best fit chosen 
through F-test

 

Table: Result overview 

Method Component 
Decay 

constant 
Mean 

intensity 
Passed 
aliquots Central age model 

Minimum age 
model 

K = 3 Component 1 3.2  −1 1.9e+04 10 of 10 0.6   0.2 Gy (0) 0.6   0.2 Gy 

K = 3 Component 2 0.25  −1 1.3e+05 10 of 10 7.8   0.1 Gy (0.01) 7.8   0.5 Gy 

K = 3 Component 3 0.0057  −1 2.3e+06 10 of 10 4.4   0.2 Gy (0.12) 4.4   0.4 Gy 

K = 4 Component 1 4.6  −1 1e+04 1 of 10 - 0.7   23.6 Gy 

K = 4 Component 2 1.3  −1 1.6e+04 5 of 10 4.6   1.9 Gy (0) - 

K = 4 Component 3 0.23  −1 1.3e+05 10 of 10 7.9   0.1 Gy (0) 7.9   0.6 Gy 

K = 4 Component 4 0.0055  −1 2.3e+06 10 of 10 4.1   0.2 Gy (0.12) 4.1   0.4 Gy 

K = 5 Component 1 6.8  −1 3.9e+03 3 of 10 1.5   3.4 Gy (0) - 

K = 5 Component 2 2.4  −1 1.6e+04 3 of 10 0.8   1.5 Gy (0) - 

K = 5 Component 3 0.31  −1 8.5e+04 7 of 10 10.2   0.5 Gy (0) 10.4   1.3 Gy 

K = 5 Component 4 0.15  −1 5.8e+04 4 of 10 6   0.8 Gy (0.14) 5.8   1.4 Gy 

K = 5 Component 5 0.0053  −1 2.4e+06 10 of 10 3.9   0.2 Gy (0.12) 3.9   0.4 Gy 
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D.3 BT1713 standard SAR protocol analysis summary 

Signal-component wise dose evaluation of the file BT1713_SAR_classic.bin: 

 

Figure: Left: Data points of whole data set with first curve (red) and global mean curve (blue). Right: Global 
mean curve (grey) fitted (black) with 3 components (colored) 

 

Figure: Evolution of the decay constants with increasing number of components K. Red square: Best fit chosen 
through F-test

 

Table: Result overview 

Method Component 
Decay 

constant 
Mean 

intensity 
Passed 
aliquots Central age model 

Minimum age 
model 

late b.    6 of 10 11.1   1.4 Gy (0.3) 9.7   1.6 Gy 

early b.    2 of 10 20.9   4.1 Gy (0) 21.6   7.4 Gy 

K = 3 Component 1 0.98  −1 2e+03 6 of 10 12.3   1.7 Gy (0.33) 10.5   1.8 Gy 

K = 3 Component 3 0.0018  −1 9.2e+04 1 of 10 - 455.5   265.9 Gy 
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D.4 BT1713 no-heating protocol analysis summary 

Signal-component wise dose evaluation of the file BT1713_SAR_RT.bin: 

 

Figure: Left: Data points of whole data set with first curve (red) and global mean curve (blue). Right: Global 
mean curve (grey) fitted (black) with 5 components (colored) 

 

Figure: Evolution of the decay constants with increasing number of components K. Red square: Best fit chosen 
through F-test

 

Table: Result overview.  

Method Component 
Decay 

constant 
Mean 

intensity 
Passed 

aliquots Central age model 
Minimum age 

model 

K = 3 Component 1 3.7  −1 4.7e+02 4 of 10 34.8   8.7 Gy (0) 35.5   12.7 Gy 

K = 3 Component 2 0.24  −1 4.6e+03 6 of 10 57   11 Gy (0.28) 45.9   15 Gy 

K = 4 Component 1 5.6  −1 3e+02 3 of 10 35.4   13.2 Gy (0) 35.5   18.6 Gy 

K = 4 Component 3 0.097  −1 4.1e+03 3 of 10 54.7   17.3 Gy (0.4) 36.9   22.1 Gy 

K = 5 Component 2 2.1  −1 3.3e+02 3 of 10 39.9   23.1 Gy (0) 39.8   32 Gy 

K = 5 Component 3 0.35  −1 2.8e+03 1 of 10 - 31.8   38.1 Gy 

K = 5 Component 4 0.072  −1 4.1e+03 4 of 10 50.8   11.4 Gy (0.1) 49.7   17.5 Gy 

Note: The allowed recuperation rate and the allowed recycling ration deviation were both set to 0.2 to increase 
number of passed aliquots.
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