3rd IR-RF Workshop 27.02.2018 Leipzig

Practical guide to IR-RF spectrometry

Dirk Mittelstraß

Currently master student physics at TU Dresden Former employee at:

- Freiberg Instruments (2007 2014)
- AG Geomorphology, JLU Gießen (2014 2015)

mittelstrassdirk@gmx.de

Practical guide to IR-RF spectrometry

- 1. Luminescence spectrometry build-up
- 2. Simulated feldspar spectrum
- 3. From luminescence emission to raw data
 - 1. Light collection
 - Collecting efficiency
 - Coupling efficiency
 - Stem effect
 - 2. Spectrograph
 - Diffraction efficiency
 - Signals higher order
 - Spectral coverage
 - 3. Camera
 - Quantum efficiency
 - Cosmic rays
 - Noise and offset
 - 4. Comparison Before and After
- 4. From raw data to luminescence emission
 - 1. Outlier removal & smoothing
 - 2. Background substraction
 - 3. Spectral response function
 - 4. Comparison Real and Corrected

lexsyg research Gießen

2. Simulated feldspar spectrum

Assuming five feldspar emissions, identified in nearly all of 35 various mineral feldspar samples by Trautmann (1999)*

No.	Peak (eV)	σ (eV)	Peak (nm)	σ (nm)
1	3.3	0.25	376	29
2	2.9	0.3	428	44
3	2.2	0.2	564	51
4	1.7	0.11	729	47
5	1.42	0.07	873	43

Assuming steady and equal photon flux and gaussian distribution for all emissions:

$$\phi(\lambda) = \frac{\phi_{emission}}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\lambda - \lambda_{max})^2}{2\sigma^2}}$$
 with $\phi_{emission} = 10^6$ photons/sec

Result is a virtual feldspar blend spectrum

Reference:

Trautmann T., PhD thesis, 1999: Radiolumineszenzuntersuchungen an Feldspat. TU Freiberg Data can be found at table A3 (note: Trautmann confused sigma and FWHM)

3. From emission to raw data

3.1. Obstacle 1: Light collection

<u>Issues</u>

- 1. Light collecting efficiency of (no) optic
- 2. Coupling efficiency light guide
- 3. Cherenkov light & radiouminescence of glass elements (stem effect)

Ignored here

- Chromatic abberation
- o Optical abberations
- o Filter transmission
- Light guide transmission
- Lens/safety glass transmission
- Glass surface reflectance
- Radio- or Photoluminescence of mechanical elements

Acceptance angle spectrograph: Light guide thickness: Sample size:

angle \uparrow , efficiency \uparrow diameter \uparrow , efficiency \uparrow diameter \uparrow , efficiency per mm² \downarrow

... lead to one optimization parameter:

No optic:Distance sample to light guideImaging optic:Lateral magnification

Case: No optic

Rule of thumb:

best distance value \approx 4x light guide diameter best sample size \approx 2x light guide diameter

Case: Imaging optic

best magnification value ≈ 1x best sample size ≈ 1x light guide diameter

best case scenario:

~ 1 % of luminescence light is collected

3.1. Obstacle 1: Light collecting

<u>Issues</u>

- 1. Light collecting efficiency of (no) optic \rightarrow loss of > 99% of signal
- 2. Coupling efficiency light guide
- 3. Cherenkov light & radiouminescence of glass elements (STEM effect)

3.1.2. Coupling efficiency

Depending on core-to-fibre ratio, **50 – 70 %** of light guide surface is sensitive to light

Light guide fibre sheme (from MOLEX Ultra Low –OH data sheet)

Light guide section with 6 fibres (usually ~ 100 fibres)

3.1.2. Coupling efficiency

~ 60 % of collected light is coupled into light guide

3.1. Obstacle 1: Light collecting

<u>Issues</u>

- 1. Light collecting efficiency of (no) optic \rightarrow loss of > 99% of signal
- 2. Coupling efficiency light guide \rightarrow loss of ~30% of signal
- 3. Cherenkov light & radiouminescence of glass elements (stem effect)

3.1.3. stem effect

Cherenkov radiation & radioluminescence of glass elements close to the irradiation source cause an additional signal background, probably dominated by a blue component

- known in medical dosimetry, see
 Yukihara & McKeever (2011) page 249
- Not investigated in Risö/lexsyg RF systems so far

Some stem effect spectra of a plexiglas light guide, Therriault-Proulx et al. (2013), figure 2

References:

Therriault-Proulx, F., Beaulieu, L., Archambault, L., Beddar, S., 2013. On the nature of the light produced within PMMA optical light guides in scintillation fiber-optic dosimetry. Physics in Medicine and Biology

Yukihara, E.G., McKeever, S.W.S., 2011. Optically stimulated luminescence: fundamentals and applications. Wiley, Chichester, West Sussex.

What is Cherenkov radiation?

blue light caused by electric ,supersonic' shock waves of high energy electrons (> ~200keV) in a medium.

3.1. Obstacle 1: Light collecting

<u>Issues</u>

- Light collecting efficiency of (no) optic
 → loss of > 99% of signal
- 2. Coupling efficiency light guide
 - \rightarrow loss of ~30% of signal
- 3. Cherenkov light & radiouminescenc
 - of glass elements (stem effect)
 - ightarrow some extra signal background

3.2. Obstacle 2: Spectrograph

<u>Issues</u>

- 1. Diffraction efficiency
- 2. Signals of higher order
- 3. Spectral coverage

Ignored here

- \circ Slit projection
- Polarization dependence
- o Adjustment dependence
- \circ Stray light
- o Mirror reflectance
- Mirror degration

3.2.1. Diffraction efficiency

Wavelength seperation by interference effects at a grooved mirror (= grating)

Groove shape and inclination is designed for maximum efficiency at a specfic **blaze wavelength** λ_{B}

Rule of thumb:

efficiency at ... Blaze wavelength ≈ 80 % Half blaze wavelength ≈ 20 % Double blaze wavelength ≈ 20 %

Reference:

Palmer, C., Loewen, E., 2014. Diffraction Grating Handbook, 7. ed. Richardson Gratings.

Diffraction by a plane grating Palmer & Loewen (2014) figure 2-1

Shematic efficiency over wavelength spectrum Palmer & Loewen (2014) figure 9-1

3.2.1. Diffraction efficiency

3.2. Obstacle 2: Spectrograph

<u>Issues</u>

- 1. Diffraction efficiency \rightarrow up to 80 % signal loss, towards the borders of the specified wavelength range
- 2. Signals of higher order
- 3. Spectral coverage

3.2.2. Diffraction order

Gratings diffract light into multiple orders, which lead to overlapping spectra

Rule of thumb:

Any signal appears again, at twice the wavelength, with a few % intensity

Solution: Longpass interference filters block signal light with shorter wavelengths than of interest

Warning: A grating inefficient in first order diffraction at a certain wavelength, may be efficient in second (or higher) order diffraction

Overlapping spectral orders Palmer & Loewen (2014) figure 2-5

Reference:

Palmer, C., Loewen, E., 2014. Diffraction Grating Handbook, 7. ed. Richardson Gratings.

3.2.2. Diffraction order

Rough (over-)estimation here: Second order signals have 10 % intensity (integral value) or 5 % signal height of first order signals

second order signals

600

wavelength (nm)

700

800

8

photons / nm sec 5 5 5

0

300

400

500

wavelength (nm)

3.2. Obstacle 2: Spectrograph

<u>Issues</u>

- 1. Diffraction efficiency \rightarrow up to 80 % signal loss, towards the borders of the specified wavelength range
- 2. Signals of higher order
 - \rightarrow may add ,ghost' signals in red-NIR
- 3. Spectral coverage

Groove density (l/mm)	<u>Rule o</u>	of thumb:
rating type: 300/500 $\Delta\lambda \approx 10$		$10^6 \frac{W_D}{f \cdot G}$
Blaze wavelength (nm)		, ,
	$\Delta\lambda$	spectral coverage (nm)
	W_{D}	width CCD chip (mm)
The groove densitiy (ruling) determines		usually: W _D ≈ 26 mm
the angular spreading of the spectrum	f	focal length spectrograph
and therefore the spectral coverage		Andor SR-163: <i>f</i> = 163 mm
	G	groove density (lines/mm)

Grating type	Ruling sheme	Spectral coverage	Signal-to-noise ratio*	Resolution**
600/X		~ 265 nm	~ 70 %	~ 8 nm
300/X		~ 530 nm	100 %	~ 16 nm
150/X		~ 1060 nm	~ 140 %	~ 32 nm

*per CCD pixel column of raw data

**slit projection dependent; Here: lexsyg Gießen at fully opened slit

3.2.3. Groove density

First order signals out of spectral coverage range become invisible, but their second order signals remain

Example: 300/500 grating sets wavelength range to 530 nm; spectrograph is adjusted to 470 - 1000 nm

<u>Issues</u>

1. Diffraction efficiency \rightarrow up to 80 % signal loss, towards the borders of the specified wavelength range

- 2. Signals of higher order
 - \rightarrow may add a ,ghost' signal in red-NIR
- 3. Spectral coverage \rightarrow restricts wavelength range

3.3. Obstacle 3: Camera

<u>lssues</u>

1. Quantum efficiency

- 2. ,Cosmic' rays
- 3. Noise and offset

Ignored here

- \circ Etaloning
- \circ Setting dependence
- o Gain & conversion rate
- o Digitization
- Clock induced charge noise
- o Detector dead time

3.3.1. Quantum efficiency

Not all incoming photons at the CCD chip are converted into measureable **photoelectrons**

Quantum efficiency relies on CCD chip parameters:

- Back-illuminated or frontilluminated or open electrode?
- UV-enhanced (coated)?
- Deep depletion?

Quantum efficiency spectra of CCD chips available for Andor Newton camera

Source: Andor Newton specifications (08/2015)

3.3.1. Quantum efficiency

QE curve here: Andor Newton DU920P-BU (Gießen)

Note: second order signals apply to their (first order) wavelength QE, not to their position on the detector

quantum efficiency

600

wavelength (nm)

500

700

800

100%

80%

60%

40%

20%

0%

300

400

3.3. Obstacle 3: Camera

<u>Issues</u>

- 1. Quantum efficiency \rightarrow wavelength dependent signal loss
- 2. ,Cosmic' rays
- 3. Noise and offset

3.3.2. Cosmic rays

,Cosmic' ray events at RF are (mostly) caused by β - and γ impacts at the CCD chip

Taken 2014 with lexsyg Gießen

Rules of thumb:

- Mostly, just one or two datapoints per event are affected Ο
- Shielding or increased distance β source to CCD decreases event rate Ο

3.3.2. Cosmic rays

We add 4 random events:

3.3. Obstacle 3: Camera

<u>Issues</u>

- 1. Quantum efficiency \rightarrow wavelength dependent signal loss
- 2. ,Cosmic' rays \rightarrow some random sharp peaks are added
- 3. Noise and offset

Camera noise:

Standard deviation of one single superpixel*:

$$\sigma = \sqrt{\sigma_{shot}^2 + \sigma_{dark}^2 + \sigma_{read}^2}$$

*Superpixel: Collection of pixels read out at once **Ratio superpixel value/data value (,counts') depends on *Gain* and *Conversion factor*

Sorts of camera noise:

- Shot noise
 Statistical uncertainty of number of photoelectrons located in one superpixel
- Dark current noise
 Statistical event of the appearance of a thermal electron in one pixel
- Read out noise
 Electronic noise added in the event of superpixel read out

Noise type	Formula*	Depend on	Example value**
Shot	$\sigma_{shot} = \sqrt{I}$	signal height I	-
Dark	$\sigma_{dark} = \sqrt{N \phi_{dark} \Delta t}$	chip temperature, superpixel size N, exposure time ∆t	0.9 e⁻ (∆t = 1 sec) 3.9 e⁻ (∆t = 20 sec)
Read	values see: certificate of performance	camera type & setting	~ 4 e⁻

* *I* – number of e- per superpixel; *N* – number of pixels per superpixel (usually N = 255 = one column);

 φ_{dark} - dark current in e-/pixel sec, highly chip temperature dependent

**Camera Gießen (Andor Newton DU920P-BU) at -70°C chip temperature, 50 kHz read out rate, default settings

3.3.3. Noise and offset

Camera noise is approximately Gauss distributed To avoid negative data values an **offset value** is added This offset value depends on the camera settings

Taken with camera Gießen (Andor Newton DU920P-BU) at closed shutter, 20 sec exposure time, -70°C chip temperature, 50 kHz read out rate, default settings; Data cleaned for cosmic rays

3.3.3. Noise and offset

3.3. Obstacle 3: Camera

<u>Issues</u>

- 1. Quantum efficiency \rightarrow wavelength dependent signal loss
- 2. ,Cosmic' rays \rightarrow some random sharp peaks are added
- 3. Noise and offset \rightarrow may hide weak peaks

4. From raw data to luminescence emission

How to transform the distorted measured spectrum back to an adequate luminescence emission spectrum?

4.1. Cosmic ray removal

Ways of removing outlier

- Iterative histogramm based removal (Pych 2003) available in R luminescence package
- differential threshold triggered median deletes outlier but keeps the noise if noise analysis for setting optimization is wished

Excel example code: Column C = raw data; C11 = Cell of interest =IF(OR(ABS(C11-C10)>[Threshold];ABS(C11-12)>[Threshold]);MEDIAN(C7:C15);C11)

 \circ running median

4.2. Smoothing

Ways of data smoothing

- Pixel binning by Hardware
 Sums signals without increasing read out noise (almost). Best way of increasing signal-to-noise ratio, but increases impact of cosmic rays. Recommended at short exposure times
- Pixel binning by Software

2 Pixels summed up = 2x signal but only $2^{0.5}x$ noise \rightarrow 40 % SNR win

o Running mean

Similar as software binning but may flatten peaks if length to high. **Attention**: Some running mean algorithms shift peaks. (Excel running mean fitting)

smoothing by running arithmetic mean (length = 15)

4.3. Background substraction

Background substraction removes camera offset and stem effect

How to obtain a noise-free background spectrum?

- 1. Repeat sequence with empty aliquot. Especially camera settings must be exactly the same
- 2. Outlier removal of obtained spectrum collection by applying running median in direction of wavelength (length = 5 or higher) AND time (length = 6 or higher)
- 3. Smoothing of every spectrum by running mean (length as for RF data or higher)
- Check spectrum collection for peak shifting with time. (don't worry about static peaks)
 If there is peak shifting → You may have an contaminated aliquot or measurement chamber
 or a serious problem with the sequence or the setup
- 5. Create one single mean spectrum from collection = **Background**

Example data:

Just 8 background spectra with closed beta source availabe

Background creation:

- Created Running median spectrum (length@time = 8; length@wavelength = 3)
- 2. Smoothed resulting spectrum (length = 15)

background substraction

A **spectral response function** [SRF] describes the wavelength dependend attenuation of the ,real' luminescence spectrum [LUM] which leads to the measured spectrum [MEAS]:

 $[MEAS] = [SRF] \cdot [LUM]$

The spectral response function is also the product of all **spectral transfer functions** [STF] which take an effect on the luminescence signal:

 $[SRF] = [STF_1] \cdot [STF_2] \cdot [STF_3] \cdot \dots$

Spectral transfer functions are called **reflectance** or **transmittance** or **efficiency** depending on the considered element

Two ways to get a SRF:

- 1. Multiplying as many spectral transfer functions as available from data sheets
- Obtaining it experimentally by measuring an exactly known spectrum [LUM*] and using the relation ...

$$[SRF] = \frac{[MEAS]}{[LUM^*]}$$

4.4. Spectral response correction

Developed in coorperation with S. Kreutzer and the AG Geomorphology, Gießen

4.4. Spectral response correction

Getting the spectral response function from **data sheets**:

Primary STFs

- o Quantum efficiency of the camera
- Diffraction efficiency of the grating
- Transmittance of every applied filter

Secondary STFs

- Transmittance of the light guide, lenses and safety glasses
- Reflectance of the spectrographs mirrors
- Reflectance of glass surfaces
- Transmittance of AR-coatings (AR-coatings work like bandpass filters)

In Vis-NIR secondary STFs can be ignored usually, but below ~ 400 nm most elements transmittance and reflectance decrease rapidly

Practical issue

How to convert the data sheet spectrum into the same data point interval as the measurement?

- o *R* **luminescence:** apply_EfficiencyCorrection does this by interpolation with approx
- **Excel:** Polynomal fitting of the datasheet values and rebuilding the STF as column related to the measurements data x-Axis. Eventually the STF of an element has to be seperated to multiple wavelength ranges with a specific polynom each

4.4. Spectral response correction

STF camera:

- 1. CSV data from LOT (trader) by request
- 2. One polynom 5th grade

STF grating:

- PDF datasheet from Richardson grating (manufacturer)
- Mixed polarization values transcribted ,over-the-thump'
- 3. From 800 nm to 1000 nm approximated
- 4. One polynom 4th grade

4.5. Comparison Real and Corrected

Real vs. Postprocessed

Dominating residual cause: Low frequency part of statistical noise, amplified by low spectral sensitivity at NIR

Thank you for your attention

For the slides and the Excel sheets, send me an short email to: <u>mittelstrassdirk@gmx.de</u>

Recommended lecture:

<u>Wang, Y., Townsend, P.D., 2013</u>. Potential problems in collection and data processing of luminescence signals. Journal of Luminescence 142, 202–211. https://doi.org/10.1016/j.jlumin.2013.03.052

O'Haver, T., 2017. A Pragmatic Introduction to Signal Processing. pdf at researchgate.net

Palmer, C., Loewen, E., 2014. Diffraction Grating Handbook, 7. ed. Richardson Gratings. pdf at researchgate.net

1. Spectrometry build-ups

Risö Reader / lexsyg research Xray

Reference:

Lapp, T., Jain, M., Thomsen, K.J., Murray, A.S., Buylaert, J.-P., 2012. New luminescence measurement facilities in retrospective dosimetry. Radiation Measurements 47, 803–808.